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ABSTRACT 

 

In this study, a Tabu Search (TS) approach to the parallel machine scheduling problem is 

presented. The problem considered consists of a set of independent jobs to be scheduled on a 

number of parallel processors to minimize total tardiness. Several surveys on parallel machine 

scheduling with due date related objectives [1, 2, 3] reveal that the NP-hard nature of the 

problem renders it a challenging area for many researchers who studied various versions. 

However, most of these studies have the assumption that jobs are available at the beginning of 

the scheduling period, which is an important deviation form reality. Here, as well as distinct due 

dates and ready times, features such as sequence dependent setup times and different processing 

rates for machines are incorporated into the classical model. These enhancements approach the 

model to the actual practice at the expense of complicating the problem further. The motivation 

of this study has been to explore the ability of Tabu Search to overcome these difficulties 

superimposed on the traditional parallel machine scheduling problem.  

 

In order to obtain a robust search mechanism, several key components of TS such as candidate 

list strategies, tabu classifications, tabu tenure and intensification/diversification strategies are 

investigated. Alternative approaches to each of these issues are developed and extensively tested 

on a set of problems obtained from the literature. Considerably better results are obtained and the 

success of the totally deterministic TS algorithm implemented is thereby demonstrated. 

 

Keywords: Parallel machine scheduling; Total Tardiness minimization; Sequence dependent 

setup times; Tabu search. 
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1 INTRODUCTION 

 

1.1 Problem Definition 

 

The classical parallel machine total tardiness problem can be stated as follows: There are n jobs 

to be processed on m continuously available identical parallel machines. Each machine can 

process only one job at a time, and each job can only be processed on only one machine. Each 

job is ready at the beginning of the scheduling horizon and has a distinct processing time and a 

distinct due date. The objective is to determine a schedule such that total tardiness is minimized, 

where tardiness of a job is the amount of time its completion time exceeds its due date. The 

problem is NP-hard, even for a single machine, i.e. m=1 (Du and Leung [4]) and exact methods 

in which the dimensionality problem is acute are mostly limited to special cases like common 

due dates and equal processing times (i.e. Root [5], Lawler [6], Elmaghraby and Park [7], 

Dessouky [8]). A large class of heuristics are based on list scheduling where the jobs are first 

prioritised according to some rule and then dispatched in this order to the machine with the 

earliest finish time. Such heuristics are proposed by Wilkerson and Irwin [9], Dogramaci and 

Surkis [10], Ho and Chang [11] and Koulamas [3]. Koulamas [12] also developed a 

decomposition heuristic and a hybrid simulated annealing heuristic, while Bean [13] applied a 

genetic algorithm heuristic to the parallel machine total tardiness problem. 

 

In all the studies cited above it is assumed that machines are identical, all jobs are available at 

time zero and setup times are non-existent. However, in many real-world situations there exist (i) 

distinct job ready dates, (ii) uniform parallel machines that are capable of processing these jobs 

at different speeds (i.e. new machines versus old machines) and (iii) sequence dependent setups. 

In this paper, these features are also incorporated into the model so as to define a problem closer 

to reality albeit far more complex than the classical one.  

 

When jobs are allowed to have distinct arrival times as well as due dates, different processing 

rates on machines and sequence dependent setup times, the literature becomes really sparse. 

There are only two studies reported on this more general problem to our knowledge and both of 

them deal with minimizing the total earliness-tardiness costs: Serifoglu and Ulusoy [14] present 

a genetic algorithm while Balakrishnan et al. [15] report a compact mathematical model to solve 

small sized (up to 10 jobs) problems. 
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This paper presents a Tabu Search approach to this generalized definition of parallel machine 

total tardiness problem. This algorithm is tested using the problem set given by Serifoglu and 

Ulusoy [14] and the results are compared to their results for the case where the weight of the 

earliness penalties is zero (In this case their problem also reduces to total tardiness problem). 

The next subsection overviews the general TS concept and its application in scheduling theory. 

Section 2 describes the key aspects of the TS approach used. Numerical experimentation, which 

compares several alternative approaches and leads towards a robust TS algorithm tailored to 

solve the problem at hand, is discussed in Section 3. The paper concludes with discussion of 

results and further studies in Section 4. 

 

1.2 Tabu Search: The Concept and Literature  

 

Tabu Search (Glover and Laguna [16], Reeves [17]) is a metaheuristic that guides a local 

heuristics search procedure to explore the solution space beyond local optimality. TS allows 

intelligent problem solving by the incorporation of adaptive memory and responsive exploration. 

Key elements of the search path are selectively remembered and strategic choices are made to 

guide the search into otherwise difficult regions. The adaptive memory usage is a clever 

compromise between the rigid memory structure of exact techniques like Branch & Bound and 

the memoryless heuristics like local search procedures. 

 

The basic procedure of TS can be summarized as follows. Starting form an initial solution, TS 

iteratively moves from the current solution to its best neighbour, even if this new solution is 

worse than the one available, until a pre-specified stopping criterion becomes true. In order to 

avoid cycling and becoming trapped in local optima, certain moves that lead to previously 

explored regions are forbidden or declared tabu, forming the short-term memory of TS. The tabu 

status of a move may be cancelled making it an allowable move if an aspiration criterion is 

satisfied (if, for instance, the tabu move leads to a new best solution). The length of time during 

which a certain move is classified as tabu, tabu tenure, is an important parameter for tabu search.  

Small values of tabu tenure lead to cycling whereas large values have the risk of prohibiting 

some good moves. Also, tabu tenures may be adjusted over time, i.e. dynamic tenure, to induce a 

balance between closely examining one region (intensification) and moving to different paths of 

the solution space (diversification). 
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In order to further improve the performance of TS, longer-term strategies like intensification and 

diversification may be included. Diversification implies forcing the search towards a region that 

is maximally diverse from the current neighbourhood. It should be mentioned at this point that 

the diversification strategy of TS is not a randomization process, but rather it uses long-term 

memory. Intensification tries to lead the search towards solutions whose features are historically 

found good by modifying neighbour selection moves or by initiating a return to previous “elite” 

solutions. 

 

A large number of successful applications of TS for scheduling problems can be found in 

literature. Among these Widmer and Hertz [18], Taillard [19], Kim [20] and Reeves [21] worked 

on the flowshop scheduling problem. Various TS algorithms for job shop scheduling are 

presented by Widmer [22], Barnes and Chambers [23], Sun et al. [24], Dell’Amico and Trubian 

[25] and Valls et. Al. [26]. Laguna et al. [27] study the single machine scheduling problem with 

the objective of minimizing the sum of setup costs and delay penalties and propose a hybrid 

neighbourhood. James and Buchanan [28] develop enhanced TS strategies for the single machine 

early/tardy scheduling problem. Hübscher and Glover [29] apply a candidate list strategy and 

introduce an influential diversification to parallel machine scheduling to minimize the makespan. 

Another study, which investigates diversification, is by Laguna, Glover and Kelly [30]. 

Minimum makespan in a flow shop with parallel machines is presented by Nowicki and 

Smutnicki [31], who employ a neighbourhood based on blocks of operations on a critical path. A 

similar block approach is used by Liaw  [32] for makespan minimization for an open shop. Park 

and Kim [33] compare SA and TS for a parallel machine scheduling problem where jobs have 

equal due dates and equal ready times for minimizing holding costs. 
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2 DESCRIPTION OF THE TABU SEARCH APPROACH  

 

This section outlines the totally deterministic TS algorithm tailored to the generalized parallel 

machine total tardiness problem by discussing several of the key concepts such as initial 

solutions, tabu classifications, candidate list structures, tabu tenure and 

intensification/diversification strategies. 

 

2.1 Initial Solutions  

 

Two methods are used to generate starting solutions: The first method uses EDD based list 

scheduling where jobs are ordered with respect to their earliest due dates and then scheduled on 

the machine that will complete them earliest. The second method is adapted from the KPM 

heuristic given by Koulamas [3] by incorporating setup times and ready times. This new 

heuristic is called FPM. 

 

2.2 Neighbourhood Generation 

 

Insert moves and pairwise exchanges (swaps) are two of the frequently used move types in 

permutation problems. An insert move identifies two particular jobs and places the first job in 

the location that directly precedes the location of the second job. A swap move, on the other 

hand, places each job in the location previously occupied by the other, and can be considered as 

a move that combines two insert moves. In the parallel machine scheduling problem the new 

locations may be on different machines as well as on the same machine. Swap moves involving 

jobs on different machines do not cause a change in the number of jobs on machines.  

 

The neighbourhood used in this study has a “hybrid” structure in which the complete “insert 

neighbourhood” is enlarged by including swap moves for jobs that are on different machines 

only. Hence, the neighbourhood also includes moves that create different sequences without 

changing the number of jobs on machines. 
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2.3 Candidate List Strategies 

 

For situations where the neighbourhood of a solution is large or its elements are expensive to 

evaluate, candidate list strategies are essential to restrict the number of solutions examined on a 

given iteration [16]. The purpose of these rules is to screen the neighbourhood so as to 

concentrate on promising moves at each iteration. When the aggressive nature of TS in selecting 

the next solution is considered, rules for generating and evaluating good candidates become 

critical for the efficiency of the search process. Since jobs have distinct ready times, different 

processing times on different types of machines and sequence dependent setup times, calculation 

of total tardiness for a given move is a tedious task. Although this is implemented in an efficient 

way by first determining the affected jobs and updating the tardiness values for only those jobs, 

move value calculation is still time consuming. Therefore, a good candidate list strategy, which 

saves time, is critical for the efficiency of the TS algorithm. 

 

In this study three candidate list strategies, which are described below, are tested. Since the 

neighbourhood generated by swap moves is already smaller than that generated by insert moves, 

all these strategies are applied only for insert moves. 

 

The Maximum Tardy vs. Maximum Early Approach:  In this approach only the jobs on the 

machine with the highest contribution to total tardiness are chosen as candidates for insert 

operations to the machine with the highest contribution to total earliness. Since this approach has 

been shown to be quite fast and decreases the size of the neighbourhood considerably, it is called 

the ‘High Candidate List Strategy’.  

 

The Maximum Tardy Approach: In this approach the jobs on the machine with the highest 

contribution to total tardiness are considered for an insert operation on any other machine. Since 

this approach is slower and has reduced cropping of the neighbourhood as compared to the high 

Candidate List Strategy, it is called the ‘Low Candidate List Strategy’. 
 

The Ready Time Closeness Approach: In this approach a job is allowed to be inserted only in 

positions where its starting time remains in a range of its ready time, i.e. ready time ± a threshold 

value. The threshold value has been determined to be the sum of the maximum processing time 

and the maximum setup time of all the jobs. This strategy has the purpose of avoiding situations 
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in which jobs are placed in quite unrelated positions causing long idle times and is called the 

'Distance Candidate List Strategy'. It is the fastest among all of the strategies used.  

 

2.4 Tabu Classification 

 

In this study, two alternatives for tabu classifications are used. Tabu Classification 1 (TC1) is 

position related and therefore has an arc approach, which classifies all schedules where arc ((i-1), 

i) is included as tabu, where i is the job  that moves and (i-1) is its immediate predecessor. Thus 

TC1 prohibits a recently moved job i from becoming the immediate successor of job i-1again 

during tabu duration. This requires all newly added arcs by a move to be checked to see if there 

is a tabu restriction. Tabu Classification 2 (TC2) on the other hand, is related to the path of the 

search, restricting certain moves to be repeated within tabu tenure, i.e. inserting i after j or 

swapping i and j, and requires a smaller number of comparisons.  

 

The last element to be mentioned here is the aspiration criterion, which allows the tabu status of 

a move to be overridden if it yields a solution better than the best obtained so far. 

 

2.5 Tabu Tenure 

 

Two approaches for tenure selection are employed in this study: using a single tenure value 

throughout the search versus systematically varying the tenure among a number of values. 

 

For the first approach, the range of tenure values that provides good performance for each 

problem size are identified and then an empirical rule that depends on the size of the problem 

instance and yields a fixed tenure value within these ranges is determined.  

 

The systematic dynamic tenure strategy tested in this paper consists of creating a sequence of 

small (S), medium (M) and large (L) tabu tenure values all in the ranges determined as stated 

above and repeating this sequence throughout the search. Varying tabu tenure in this manner 

actually provides a balance between intensification and diversification. Short tabu tenures allow 

fine-tuning of neighbourhood search and close examination of regions around a local optimum, 

while long tenures help moving to different parts of the solution space [34]. 
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2.6 Long Term Strategies 

 

Although some intensification and diversification aspects are thus introduced in the TS 

mechanism through the use of systematic dynamic tenure, these concepts are further investigated 

by developing some longer term strategies. 

 

The diversification strategy used in this study is different than what is usually employed in 

literature in that it does not use frequency based information but rather relies on realizing that the 

search is trapped in some undesirable region (i.e. a deep valley or a large plateau) and forcing it 

out by resorting to a very large tenure which literally means remembering the whole search 

history. Thus, after a pre-specified number of non- improving iterations during the normal course 

of TS, the current tenure is multiplied by a large multiplier and a diversification phase 

commences. After a specified number of iterations a major disruption is achieved and the short 

term memory TS is resumed.  

 

The intensification strategy employed consists of keeping a bounded length sequential list of 

elite solutions during the short-term memory TS and, after erasing all memory, restarting and 

carrying out a search of a given length from each of these solutions. 
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3 COMPUTATIONAL STUDIES 

 

A software called “WinMeta” is implemented in Visual C++ to conduct the necessary 

experimentation. WinMeta can be used to generate new problem instances with specific 

parameters defined in pre-assigned ranges, or to take problems previously created as inputs. The 

software has embedded in it all the strategies developed in this study. The solution scheme for a 

problem instance can be specified by the user by selecting a combination of these strategies and 

providing a set of parameters via a user friendly GUI. WinMeta dynamically produces the total 

tardiness-total earliness graph of the run, which enables the user to get a clear idea of the 

topology of the search space. A sample screen of WinMeta is provided in Figure 1. These 

features of the software allow flexible experiment design and easy tuning of the parameters 

employed in the TS strategies developed. Taking full advantage of the capabilities of the 

software developed, extensive experimentation is performed. The experiments are conducted on 

a Pentium 2-MMX 350 MHz CPU, Host Bus 100 MHz with 128 MB RAM. The problem set and 

the results obtained are presented in the next sections. 

 

3.1 Example Problems  

 

Although WinMeta can be used to generate a new set of problems, in this study it is preferred to 

use the benchmark problem set due to Serifoglu and Ulusoy [14]. They propose a genetic 

crossover operator for parallel machine scheduling with earliness and tardiness penalties. Their 

problem consists of scheduling a set of independent jobs with sequence dependent setup times, 

distinct duedates and ready times on a number of parallel machines with different processing 

rates. Their test problems were generated using the design in Table 1 with 20 instances for each 

combination. In each problem, it has been assumed that there are two machine types and the 

machines are evenly distributed among these two types which differ only in their processing 

rates. The details regarding the generation of the processing times, ready times and duedates can 

be obtained from the referred paper.  

 

From this set of problems, the 40-job and 60-job problem sets with a maximum set-up duration 

of 4 time-units are used in our study. The 20-job set is discarded because it turned out to be 

trivial for the total tardiness measure. Thus the test set used consists of 80 problems. The first 

two digits in the problem name encoding correspond to the number of jobs, third digit to the 
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number of machines, the fourth to maximum setup length and the last two digits give the 

instance number. As an example, problem “40247” is the seventh instance of the 40 jobs-2 

machines case with a maximum setup duration of 4 time units. The data from the problem sets is 

scaled up by 100 to avoid decimal numbers. 

 

3.2 Designing the Short -Term Memory TS 

 

The experiments performed at this phase are aimed at designing a short-term memory TS for the 

problem under consideration by comparing the alternative approaches discussed previously. 

These experiments are restricted to the first 10 problems of the 60-job set. For all the 

experiments a stopping criterion of 5000 non- improving iterations is applied. 

 

The first step is to compare the performances of the two tabu classification methods. Each 

method is employed over a tenure range of [0-250] in increments of 10. For each problem, the 

percent improvement from the EDD initial solution (i.e. (EDD-Best)/EDD) at each tenure and 

the average of the percent improvements over the stated range of tenures are computed, and 

given in Table 2 as Avg. % Impr. The grand averages are given in the last row of Table 2.  As 

clearly seen from the results, Tabu Classification 2 (TC2) gives quite competitive results with 

those of Tabu Classification 1 (TC1). Considering the fact that TC2 is 10% faster than TC1, TC2 

is chosen to be used for the rest of the study. 

 

The second step is the comparison of the two initial solution heuristics: EDD and FPM. The 

results can be seen in Table 3, where the pairwise comparison represents the percent 

improvement of EDD-initialized solution over FPM-initialized solution. As seen from these 

results FPM is dominated by EDD. Therefore EDD is chosen as the default initial solution 

generation heuristic.  

 

As the third step, the first 10 problems in the 60-job and 40-job sets are tested with tabu tenures 

starting from 0 to 250, augmenting by 10 at each trial in order to determine a good tabu tenure. 

This extensive experimentation reveals that no single tenure value can give the best solutions to 

all problem instances, but good ranges of tenure values can be located. So the efforts are turned 

to designing an empirical formula depending on problem size that yields an effective tenure for 

all classes of problems. As a result, nnk ×  turns out to be a reasonable compromise with k = 

0.5. However, the same formula performs poorly when applied with a candidate list strategy 
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since a candidate list strategy reduces the neighbourhood size considerably and the tenure value 

has to be discounted accordingly. After further experimentation, the tenure formula to be used 

along with a candidate list strategy is determined as )5.0( −× mnnk , where again, k = 0.5.  

 

The last step is the comparison of the candidate list strategies using this empirical formula. The 

results are summarized in Table 4 and Table 5. As seen from the results, it can be concluded that 

the 'Low Candidate List Strategy' dominates the others.   

 

The short-term memory TS algorithm developed in this section is used in solving all 80 problems 

in the problem set and the results are presented in the first two columns of Tables 6 to 9. These 

columns represent the case when there is no candidate list strategy with the case when the 

candidate list strategy is “low”, respectively. The results indicate that the “low” candidate list 

strategy is very powerful; not only improving the performance but at the same time dramatically 

decreasing the CPU time. Moreover, Tables 10 to 13 demonstrate that the short-term TS with the 

“low” candidate list strategy yields much superior results as compared to the GA solutions [3]. 

 

Hence, the TS algorithm with the “low” candidate list strategy is a successful solution method 

for the parallel machine scheduling problem with sequence dependent setup times. The studies 

from this point onward will aim to find ways of making efficient use of the computational time 

saved by applying the candidate list strategy in order to improve the solution further. 

 

3.3 Dynamic Tenure  

 

Based on the observation that problem structure is sensitive to tenure value, a systematic 

dynamic tenure strategy is also tested. The parameter k in the empirical tenure formula is used in 

varying the tenure value. A set of different small (S), medium (M) and large (L) tenures as given 

by different sets of k values (kS, kM, kL respectively) and three different cycle patterns of these 

tenures are tested. These are shown in Table 14. Each tenure is to be applied for [2×medium 

tenure] iterations. In all experiments the candidate list strategy is “Low” and the stopping 

criterion is 5000 non- improving iterations. It is concluded that the LMMSMM string with kS = 

0.35,  kM = 0.5 and  kL = 0.8 is the best among these structures. 

 

The results of the dynamic tenure structures tested in this study are presented in Table 15 where 

a comparison is made between the different structures for the entire set of problems. The 
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solutions of the complete problem set for the selected dynamic tenure structure are presented in 

the third columns of Tables 6 to 9. The summary of the conclusions is provided in Table 16. It 

can be said that incorporating the dynamic tenure structure into the base TS algorithm does not 

improve the solution quality. It does, however, diminish the CPU time significantly. 

 

3.4 Diversification 

 

Three parameters are required to completely define the diversification strategy employed in this 

study. The first parameter, the phase criterion, defines when to start the diversification phase, 

and is expressed in number of non- improving iterations that should be completed before 

concluding that the search has stagnated. The second parameter defines the length of the 

diversification phase. The last parameter is the tenure multiplier. The tenure value obtained by 

multiplying the current tenure by its multiplier is used throughout the diversification phase after 

which the short-term TS resumes with the original tenure. 

 

Extensive experimentation over these parameters was performed and the results of these 

experiments are provided in Tables 17 to 20 where a comparison between the alternative 

parameter settings can be made. These results indicate that the best combination of these 

parameters is to employ the diversification strategy in an overall search duration of 8000 non-

improving iterations, where the phase criterion is set at 5000 non- improving iterations, the 

diversification duration is set at 100 non- improving iterations and the tenure multiplier is chosen 

to be 1000.  

 

The result of applying this diversification strategy over the base TS algorithm can be seen in 

column 4 of Tables 6 to 9. The improvement brought to the problems with non-zero solutions 

through diversification is summarized in Table 21. 

 

3.5 Intensification 

 

In order to fully describe the intensification strategy used in this study the number and nature of 

the elite solutions to be stored during the short-term memory TS should be specified. Also, the 

duration of intensification around each local optimum and the search strategy to be used during 

the intensification phase have to be defined. Experimentation on two different sets of these 

parameters with and without the dynamic tenure structure is done and the results of these 
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experiments are summarized in Tables 22 to 25. Based on the results of this experimentation it is 

decided that intensifying around two elite solutions, where an elite solution is defined as a best 

solution that cannot be improved for at least 300 iterations, provides good results. The 

intensification phase is adopted after 5000 non-improving iterations of short-term memory TS 

and lasts for 1500 non- improving iterations around each elite solution. 

 

Interestingly, the best results are obtained when the candidate list strategy is dropped during 

intensification. This is expected because intensification is a fine-tuning process, and closer 

examination of the neighbourhood by including the moves previously screened by the candidate 

list strategy helps in fine-tuning. 

 

In Tables 6 to 9 where the final results are summarized, the intensification column (column 5) 

uses the above combination of parameters. The improvement brought by intensification over the 

problems with non-zero solutions is summarized in Table 26. 

 

The best TS results obtained throughout the various stages of experimentation performed in this 

study are recorded for future reference as benchmark values. These results are reported in Table 

27, where each problem and its respective best TS result are seen. 
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4 CONCLUSIONS 

 

In this paper, a robust TS algorithm for the solution of a very complex the parallel machine 

scheduling problem where jobs have sequence dependent setup times, distinct duedates and 

ready times is investigated. The major components of TS are tackled through extensive 

experimentation and as a result, a completely deterministic TS algorithm is defined. The 

performance of the algorithm is tested using an existing set of problems from literature, and the 

obtained results are dramatically better than those that were previously reported.  

 

The most critical TS component in this algorithm is its context related candidate list strategy. 

The so-called “low” candidate list strategy considers job insertions from the machine with the 

maximum contribution to total tardiness to each of the other machines respectively. The results 

reveal that this candidate list strategy is very successful in isolating desirable regions of the 

neighbourhood, which not only increases the speed of the search, but also improves the solution 

quality with its power to overcome topological traps and direct the search to good regions. 

 

Generally, the intensification strategy employed performs better than the diversification strategy 

for these problems. However, both strategies are able to bring some improvement over the short-

term memory TS solution within the time frame given by the TS with no candidate list strategy. 

This therefore has been an efficient way of using the time saved by applying the “low” strategy. 

 

The observation that the improvement brought by the diversification and intensification efforts is 

limited to less than 1 % can be attributed to the power of the base algorithm arguing that the 

solutions are already good. But unfortunately it is hard to confirm this since it is not possible to 

obtain the optimal results. A good lower bound for the parallel machine total tardiness problem 

with setup times and ready times is not available either. However, since there are 20 non-trivial 

problems with zero objective value, it can be argued that in at least ¼th of these problems the TS 

algorithm is able to find the optimal solution.  

 

The diversification and intensification strategies employed in this paper do not use any 

frequency- information and they are context- independent strategies that can be applied to any 

problem. It may be an interesting further research to try to incorporate some problem dependent 
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information in creating influential moves towards some elite solutions or away from already 

searched regions for intensification and diversification purposes, respectively. 
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Figure 1 Sample Screen for ‘WinMeta’
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Table 1 Problem Design Parameters  

Number of jobs: n 20, 40, 60 
Number of machines: m 2, 4 
Maximum setup duration 4,8 

 

 

Table 2 Comparison of the two Tabu Classification Methods over a tenure range of [0-250] 

 TC1 TC2 

Problem Avg.% Impr. Avg.% Impr. 

60241 55.99 51.87 

60242 65.61 63.65 

60243 34.89 33.83 

60244 47.36 61.22 

60245 48.48 61.04 

60246 50.96 51.51 

60247 41.37 41.43 

60248 59.41 59.91 

60249 59.01 57.93 

602410 63.98 64.34 

60441 100.00 100.00 

60442 66.20 66.11 

60443 67.57 63.71 

60445 51.78 50.60 

60446 70.30 64.27 

60447 51.00 51.58 

60448 90.20 90.20 

60449 95.65 95.44 

604410 54.33 54.68 

Grand Average 61.79 62.28 
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Table 3 Effect of the Starting Solution 

 EDD FPM 
Pairwise 

comparison 

Problem Tenure Initial Best Initial Best 
(FPM-EDD )*100 

EDD 

60241 170 33133 14205 45555 15035 5.843 

60242 250 20542 6594 25505 6990 6.005 

60243 230 28152 17483 39689 17838 2.031 

60244 250 140200 73060 102375 73030 -0.041 

60245 230 71646 36005 130395 35508 -1.380 

60246 230 110746 50492 87395 53106 5.177 

60247 130 46177 26916 50297 27054 0.513 

60248 170 20853 8042 42830 8130 1.094 

60249 250 43017 16790 55065 17924 6.754 

602410 210 62912 21336 83359 22269 4.373 

60441 ALL 1297 0 12946 0 0.000 

60442 210 14307 3717 23127 4032 8.475 

60443 230 5784 350 21811 947 170.571 

60444 ALL 0 0 2043 0 0.000 

60445 230 6915 2703 12729 3388 25.342 

60446 150 2256 635 5744 1087 71.181 

60447 190 12188 5354 25284 5006 -6.500 

60448 230 1110 0 5102 0 0.000 

60449 190 3284 43 11802 0 -100.000 

604410 230 17494 5748 32175 5029 -12.509 

Average % Difference 9.346 
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Table 4 Comparison of the Candidate List Strategies-60 jobs, 2 machines 

60 JOBS - 2 MACHINES 

 Tenure 155 155 155 

 Candidate List Strategy 

 
 

Low High Distance 

Problem Name 
EDD 

Initial 
Best % Impr. Best % Impr. Best % Impr. 

60241 33133 14366 56.64 16936 48.88 14468 56.33 

60242 20542 6704 67.36 7352 64.21 7399 63.98 

60243 28152 18352 34.81 18994 32.53 18611 33.89 

60244 140200 73113 47.85 74754 46.68 77971 44.39 

60245 71646 37265 47.99 38492 46.27 39204 45.28 

60246 110746 50975 53.97 54162 51.09 53752 51.46 

60247 46177 26804 41.95 27682 40.05 28295 38.72 

60248 20853 8270 60.34 8738 58.10 8952 57.07 

60249 43017 17803 58.61 19823 53.92 18310 57.44 

602410 62912 22172 64.76 24923 60.38 22255 64.63 

Average % Impr. 53.43 50.21 51.32 
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Table 5 Comparison of the Candidate List Strategies-60 jobs, 4 machines 

60 JOBS - 4 MACHINES 

 Tenure 66 66 66 

 Candidate List Strategy 

 
 

Low High Distance 

Problem Name 
EDD 

Initial 
Best % Impr. Best % Impr. Best % Impr. 

60441 1297 0 100.00 0 100.00 0 100.00 

60442 14307 3973 72.23 5997 58.08 5552 61.19 

60443 5784 512 91.15 2206 61.86 3517 39.19 

60444 0 0 - 0 - 0 - 

60445 6915 2961 57.18 3053 55.85 3952 42.85 

60446 2256 364 83.87 504 77.66 1262 44.06 

60447 12188 5249 56.93 5472 55.10 6640 45.52 

60448 1110 0 100.00 0 100.00 0 100.00 

60449 3284 43 98.69 436 86.72 196 94.03 

604410 17494 4993 34.67 6432 15.84 8937 48.91 

Average % Impr. 77.19 67.90 63.97 
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Table 6 Final Results for 60 jobs-2 machines 

60 JOBS - 2 MACHINES 

kS-kM-kL 0.5 0.5 0.35-0.5-0.8 0.5 0.5 

Cycle String M M LMMSMM M M 

Strategies none low low + 
dynamic 

low + 
diversification 

low + 
intensification 

Non-improving Iterations  5000 5000 5000 8000 8000 

Problem best % impr best % impr best % impr best % impr best % impr

60241 14205 57.13 14366 56.64 14677 55.70 14360 56.66 14350 56.69 
60242 6990 65.97 6704 67.36 6990 65.97 6570 68.02 6662 67.57 
60243 18094 35.73 18352 34.81 17749 36.95 17593 37.51 18352 34.81 
60244 74054 47.18 73113 47.85 73389 47.65 73113 47.85 73113 47.85 
60245 35690 50.19 37265 47.99 35543 50.39 35488 50.47 36406 49.19 
60246 53173 51.99 50975 53.97 52825 52.30 50975 53.97 50975 53.97 
60247 27152 41.20 26804 41.95 26776 42.01 26804 41.95 26804 41.95 
60248 8493 59.27 8270 60.34 8998 56.85 8270 60.34 8087 61.22 
60249 17576 59.14 17803 58.61 17254 59.89 17336 59.70 17695 58.87 
602410 21577 65.70 22172 64.76 21434 65.93 22172 64.76 21518 65.80 

602411 11453 75.78 11694 75.27 11860 74.92 11694 75.27 11334 76.04 
602412 14216 53.36 14080 53.81 14991 50.82 14080 53.81 14080 53.81 
602413 12806 65.97 13237 64.82 13303 64.65 12978 65.51 13185 64.96 
602414 6951 68.52 7069 67.99 6941 68.57 7069 67.99 7048 68.09 
602415 20502 44.35 20017 45.67 20068 45.53 20017 45.67 20017 45.67 
602416 24281 49.36 24047 49.85 23883 50.19 24047 49.85 24047 49.85 
602417 13554 40.57 13877 39.15 12222 46.41 13419 41.16 13874 39.17 
602418 40459 60.51 40632 60.34 40237 60.72 40632 60.34 39989 60.97 
602419 351 90.61 256 93.15 300 91.98 256 93.15 256 93.15 
602420 24544 63.67 24813 63.27 26500 60.78 24813 63.27 23612 65.05 

average % improvement 57.31  57.38  57.41  57.86  57.73 

average CPU 670.40  490.90  435.05  826.85  761.35 
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Table 7 Final Results for 60 jobs-4 machines 

60 JOBS - 4 MACHINES 

kS-kM-kL 0.5 0.5 0.35-0.5-0.8 0.5 0.5 

Cycle String M M LMMSMM M M 

Strategies none low low low + 
diversification 

low + 
intensification 

Non-improving Iterations  5000 5000 5000 8000 8000 

Problem best % impr best % impr Best % impr best % impr best % impr 

60441 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
60442 3451 75.88 3973 72.23 4006 72.00 3697 74.16 3913 72.65 
60443 935 83.83 512 91.15 155 97.32 512 91.15 512 91.15 
60444 0 - 0 - 0 - 0 - 0 - 
60445 3550 48.66 2961 57.18 2737 60.42 2961 57.18 2737 60.42 
60446 828 63.30 364 83.87 364 83.87 364 83.87 364 83.87 
60447 5468 55.14 5249 56.93 5064 58.45 4775 60.82 5029 58.74 
60448 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
60449 43 98.69 43 98.69 0 100.00 43 98.69 43 98.69 
604410 7490 57.19 4993 71.46 6039 65.48 4993 71.46 4975 71.56 

604411 4962 56.58 4717 58.73 4937 56.80 4717 58.73 4553 60.16 
604412 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
604413 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
604414 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
604415 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
604416 264 92.70 123 96.60 90 97.51 123 96.60 123 96.60 
604417 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
604418 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
604419 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
604420 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 

average % improvement 85.89  88.78  89.04  89.09  89.15 

average CPU 265.16  116.21  94.65  167.95  199.50 
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Table 8 Final Results for 40 jobs-2 machines 

40 JOBS - 2 MACHINES 

kS-kM-kL 0.5 0.5 0.35-0.5-0.8 0.5 0.5 

Cycle String M M LMMSMM M M 

Strategies none low low low + 
diversification 

low + 
intensification 

Non-improving Iterations 5000 5000 5000 8000 8000 

Problem best % impr best % impr best % impr best % impr best % impr

40241 14079 30.86 14079 30.86 14079 30.86 14079 30.86 14079 30.86 
40242 3946 58.25 4013 57.54 3946 58.25 3946 58.25 3946 58.25 
40243 3335 62.96 3335 62.96 3335 62.96 3335 62.96 3335 62.96 
40244 10758 31.21 10095 35.45 10095 35.45 10095 35.45 10095 35.45 
40245 19703 35.13 19748 34.98 19722 35.07 19748 34.98 19703 35.13 
40246 26767 51.47 26372 52.18 26372 52.18 26372 52.18 26372 52.18 
40247 18565 63.87 18565 63.87 19324 62.39 18565 63.87 18565 63.87 
40248 37513 41.35 37658 41.12 37789 40.92 37658 41.12 37658 41.12 
40249 1142 87.20 1055 88.18 1055 88.18 1055 88.18 1055 88.18 
402410 1270 80.87 1038 84.37 1038 84.37 1038 84.37 1038 84.37 

402411 1726 61.52 1835 59.09 1869 58.33 1726 61.52 1726 61.52 
402412 8288 46.75 8331 46.47 8465 45.61 8331 46.47 8199 47.32 
402413 8382 64.54 8382 64.54 8382 64.54 8382 64.54 8382 64.54 
402414 5860 56.36 5869 56.29 5869 56.29 5869 56.29 5860 56.36 
402415 21977 53.13 22378 52.28 22134 52.80 22134 52.80 22190 52.68 
402416 43502 45.19 43502 45.19 43502 45.19 43502 45.19 43502 45.19 
402417 15816 42.00 15816 42.00 15976 41.42 15816 42.00 15816 42.00 
402418 6391 55.80 5866 59.43 6430 55.53 5866 59.43 5866 59.43 
402419 27258 35.78 27258 35.78 28192 33.58 27258 35.78 27258 35.78 
402420 2934 53.03 2934 53.03 2934 53.03 2934 53.03 2934 53.03 

Average % improvement 52.86  53.28  52.85  53.46  53.51 

Average CPU 213.35  145.15  118.85  224.10  224.70 
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Table 9 Final Results for 40 jobs-4 machines 

40 JOBS - 4 MACHINES 

kS-kM-kL 0.5 0.5 0.35-0.5-0.8 0.5 0.5 

Cycle String M M LMMSMM M M 

Strategies none low low low + 
diversification 

low + 
intensification 

Non-improving Iterations  5000 5000 5000 8000 8000 

Problem best % impr best % impr best % impr best % impr best % impr 

40441 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
40442 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
40443 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
40444 0 - 0 - 0 - 0 - 0 - 
40445 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
40446 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
40447 1155 78.57 922 82.89 1216 77.44 922 82.89 914 83.04 
40448 166 89.88 68 95.85 79 95.18 68 95.85 66 95.98 
40449 129 91.62 0 100.00 0 100.00 0 100.00 0 100.00 
404410 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 

404411 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
404412 0 - 0 - 0 - 0 - 0 - 
404413 2807 71.91 2851 71.47 2919 70.79 2851 71.47 2851 71.47 
404414 3456 47.21 2704 58.70 2704 58.70 2704 58.70 2704 58.70 
404415 1388 77.51 1388 77.51 1886 69.44 1388 77.51 1388 77.51 
404416 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
404417 0 - 0 - 0 - 0 - 0 - 
404418 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
404419 0 - 0 - 0 - 0 - 0 - 
404420 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 

Average % improvement 91.04  92.90  91.97  92.90  92.92 

Average CPU 57.00  28.45  19.40  36.10  43.60 
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Table 10 Comparison of GA [3] vs TS for 60 jobs - 2 machines 

60 JOBS - 2 MACHINES 

Problem GA TS % Improvement 
of TS over GA 

60241 72860 14366 80.28 
60242 74948 6704 91.06 
60243 93203 18352 80.31 
60244 127175 73113 42.51 
60245 110234 37265 66.19 
60246 148363 50975 65.64 
60247 59213 26804 54.73 
60248 69940 8270 88.18 
60249 98100 17803 81.85 
602410 91911 22172 75.88 
602411 58755 11694 80.10 
602412 54686 14080 74.25 
602413 102444 13237 87.08 
602414 88232 7069 91.99 
602415 90994 20017 78.00 
602416 84974 24047 71.70 
602417 37049 13877 62.54 
602418 81804 40632 50.33 
602419 55911 256 99.54 
602420 119553 24813 79.25 

Average % Improvement over GA 75.07 
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Table 11 Comparison of GA [3] vs TS for 60 jobs - 4 machines 

60 JOBS - 4 MACHINES 

Problem GA TS % Improvement 
of TS over GA 

60441 27626 0 100.00 
60442 23326 3973 82.97 
60443 40861 512 98.75 
60444 18057 0 100.00 
60445 13608 2961 78.24 
60446 9732 364 96.26 
60447 22731 5249 76.91 
60448 33076 0 100.00 
60449 25279 43 99.83 
604410 36781 4993 86.43 
604411 42430 4717 88.88 
604412 17914 0 100.00 
604413 30541 0 100.00 
604414 9370 0 100.00 
604415 20035 0 100.00 
604416 14276 123 99.14 
604417 32919 0 100.00 
604418 13761 0 100.00 
604419 13442 0 100.00 
604420 29440 0 100.00 

Average % Improvement over GA 95.37 
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Table 12 Comparison of GA [3] vs TS for 40 jobs- 2 machines 

40 JOBS - 2 MACHINES 

Problem GA TS 
% Improvement 
of TS over GA 

40241 25482 14079 44.75 
40242 10039 4013 60.03 
40243 6224 3335 46.42 
40244 17971 10095 43.83 
40245 34632 19748 42.98 
40246 43730 26372 39.69 
40247 35683 18565 47.97 
40248 61017 37658 38.28 
40249 8951 1055 88.21 
402410 11097 1038 90.65 
402411 4071 1835 54.93 
402412 15907 8331 47.63 
402413 24500 8382 65.79 
402414 12755 5869 53.99 
402415 32672 22378 31.51 
402416 56979 43502 23.65 
402417 34456 15816 54.10 
402418 17006 5866 65.51 
402419 35856 27258 23.98 
402420 7122 2934 58.80 

Average % Improvement over GA 51.13 



 33 

Table 13 Comparison of GA [3] vs TS for 40 jobs - 4 machines 

40 JOBS - 4 MACHINES 

Problem GA TS % Improvement 
of TS over GA 

40441 2980 0 100.00 
40442 4259 0 100.00 
40443 2002 0 100.00 
40444 2422 0 100.00 
40445 131 0 100.00 
40446 5549 0 100.00 
40447 6348 922 85.48 
40448 5745 68 98.82 
40449 3304 0 100.00 
404410 4270 0 100.00 
404411 2142 0 100.00 
404412 726 0 100.00 
404413 12067 2851 76.37 
404414 9821 2704 72.47 
404415 7812 1388 82.23 
404416 0 0 - 
404417 2244 0 100.00 
404418 3766 0 100.00 
404419 581 0 100.00 
404420 6008 0 100.00 

Average % Improvement over GA 95.55 
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Table 14 Tested dynamic tenure structures 

Set kS kM kL Cycle String 
1 0.4 0.5 0.7 SMLM 
2 0.35 0.5 0.8 SMLM 
3 0.35 0.5 1 SMLM 
4 0.35 0.5 0.8 LMMSMM 
5 0.35 0.5 0.8 MMSMML 
6 0.35 0.5 2 LMMSMM 
7 0.35 0.5 2 MMSMML 
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Table 15 Comparison of Different Dynamic Tenure Implementations  

 
kS-kM-kL 0.4-0.5-0.7 0.35-0.5-0.8 0.35-0.5-1 0.35-0.5-2 0.35-0.5-2 

Cycle string SMLM SMLM SMLM MMSMML LMMSMM 
Candidate 

List Strategy 
low low low low low 

Problem Best %Impr Best %Impr Best %Impr Best %Impr Best %Impr 
40241 14079 30.86 14079 30.86 14079 30.86 14079 30.86 14079 30.86 
40242 3946 58.25 3946 58.25 3946 58.25 3946 58.25 3946 58.25 
40243 3335 62.96 3335 62.96 3335 62.96 3335 62.96 3335 62.96 
40244 10095 35.45 10095 35.45 10095 35.45 10095 35.45 10095 35.45 
40245 19722 35.07 19722 35.07 19722 35.07 19703 35.13 19703 35.13 
40246 26543 51.87 26372 52.20 26543 51.90 26990 51.06 26868 51.28 
40247 18585 63.83 18585 63.80 18565 63.90 18585 63.83 18565 63.87 
40248 37610 41.20 37610 41.20 37710 41.00 38068 40.48 37513 41.35 
40249 1055 88.18 1055 88.20 1055 88.20 1055 88.18 1055 88.18 
402410 1270 80.87 1038 84.40 1109 83.30 1038 84.37 1353 79.62 
40441 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
40442 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
40443 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
40444 0 - 0 - 0 - 0 - 0 - 
40445 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
40446 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
40447 1145 78.75 947 82.40 1194 77.80 1034 80.81 1076 80.03 
40448 131 92.01 79 95.20 160 90.20 78 95.24 116 92.93 
40449 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
404410 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
60241 14350 56.69 14677 55.70 14531 56.14 14531 56.14 14677 55.70 
60242 6990 65.97 7059 65.64 7399 63.98 7399 63.98 7129 65.30 
60243 18135 35.58 18460 34.43 17824 36.69 17824 36.69 17607 37.46 
60244 73292 47.72 73171 47.81 73633 47.48 73633 47.48 73426 47.63 
60245 36484 49.08 35486 50.47 37959 47.02 37959 47.02 36351 49.26 
60246 53494 51.70 53204 51.96 50374 54.51 50374 54.51 50529 54.37 
60247 27232 41.03 27232 41.03 27087 41.34 27087 41.34 26804 41.95 
60248 8834 57.64 9774 53.13 9030 56.70 9030 56.70 8060 61.35 
60249 17747 58.74 17312 59.76 17618 59.04 17618 59.04 17339 59.69 
602410 22398 64.40 20943 66.71 21824 65.31 21824 65.31 21899 65.19 
60441 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
60442 4115 71.24 2737 80.87 4307 69.90 4307 69.90 3451 75.88 
60443 620 89.28 273 95.28 441 92.38 441 92.38 727 87.43 
60445 2827 59.12 3625 47.58 2773 59.90 2773 59.90 2777 59.84 
60446 436 80.67 364 83.87 380 83.16 380 83.16 399 82.31 
60447 5029 58.74 5029 58.74 5249 56.93 5249 56.93 4773 60.84 
60448 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 
60449 43 98.69 0 100.00 43 98.69 43 98.69 43 98.69 
604410 5858 23.35 4893 35.98 5273 31.01 5273 31.01 4981 71.53 

Avg.%Impr. 69.10 69.97 69.45 69.65 70.90 
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Table 16 Dynamic Tenure Structure Results 

Comparison Criterion % Improvement No. of Better Solutions 
Found 

CPU 

kS-kM-kL 0.5 0.35-0.5-0.8 0.5 0.35-0.5-0.8 0.5 0.35-0.5-0.8 

Cycle String M LMMSMM M LMMSMM M LMMSMM 

Strategies low low+dynamic low low+dynamic low low+dynamic 

Non-improving Iterations  5000 5000 5000 5000 5000 5000 

40/2 53.28 52.85 7 3 145.15 118.85 
40/4 92.90 91.97 4 0 28.45 19.4 
60/2 57.38 57.41 11 9 490.9 435.05 
60/4 88.78 89.04 3 5 116.21 94.65 
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Table 17 Comparison of Diversification Structures for 60 jobs-2 machines 

(tenure multiplier = 1000) 

 60 JOBS - 2 MACHINES 

 kS-kM-kL 0.5 0.5 0.5 

 Cycle String M M M 

 Strategies 

low + 
diversification 

low + 
diversification 

low + 
diversification 

 
Phase 

Criterion 2000 5000 3000 

 

Non-
improving 
Iterations  5000 8000 7500 

Problem EDD Initial best % impr best % impr best % impr 
60241 33133 14205 57.13 14360 56.66 14350 56.69 
60242 20542 7032 65.77 6570 68.02 6797 66.91 
60243 28152 17772 36.87 17593 37.51 17296 38.56 
60244 140200 73483 47.59 73113 47.85 73113 47.85 
60245 71646 35457 50.51 35488 50.47 36130 49.57 
60246 110746 52918 52.22 50975 53.97 50975 53.97 
60247 46177 26679 42.22 26804 41.95 26804 41.95 
60248 20853 8702 58.27 8270 60.34 8270 60.34 
60249 43017 17907 58.37 17336 59.70 17862 58.48 
602410 62912 22354 64.47 22172 64.76 21756 65.42 
602411 47295 11204 76.31 11694 75.27 11694 75.27 
602412 30482 14216 53.36 14080 53.81 14080 53.81 
602413 37630 13103 65.18 12978 65.51 13237 64.82 
602414 22084 7142 67.66 7069 67.99 6948 68.54 
602415 36844 20502 44.35 20017 45.67 20032 45.63 
602416 47951 24606 48.69 24047 49.85 24281 49.36 
602417 22807 13709 39.89 13419 41.16 12304 46.05 
602418 102449 39000 61.93 40632 60.34 39116 61.82 
602419 3739 555 85.16 256 93.15 256 93.15 
602420 67564 26193 61.23 24813 63.27 25197 62.71 

Average % improvement   56.86   57.86   58.05 

Average CPU   431.80   826.85   662.20 
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Table 18 Comparison of Diversification Structures for 60 jobs-4 machines 

(tenure multiplier = 1000) 

 60 JOBS - 4 MACHINES 

 kS-kM-kL 0.5 0.5 0.5 

 Cycle String M M M 

 Strategies 

low + 
diversification 

low + 
diversification 

low + 
diversification 

 Phase Criterion 2000 5000 3000 

 
Non-improving 

Iterations  5000 8000 7500 

Problem EDD Initial best % impr best % impr best % impr 
60441 1297 0 100.00 0 100.00 0 100.00 
60442 14307 3254 77.26 3697 74.16 3973 72.23 
60443 5784 350 93.95 512 91.15 768 86.72 
60444 0 0 - 0 - 0 - 
60445 6915 2713 60.77 2961 57.18 2961 57.18 
60446 2256 364 83.87 364 83.87 364 83.87 
60447 12188 4772 60.85 4775 60.82 5191 57.41 
60448 1110 0 100.00 0 100.00 0 100.00 
60449 3284 43 98.69 43 98.69 0 100.00 
604410 17494 5512 68.49 4993 71.46 4993 71.46 
604411 11429 5010 56.16 4717 58.73 4717 58.73 
604412 2114 0 100.00 0 100.00 0 100.00 
604413 1410 0 100.00 0 100.00 0 100.00 
604414 1815 0 100.00 0 100.00 0 100.00 
604415 230 0 100.00 0 100.00 0 100.00 
604416 3614 266 92.64 123 96.60 58 98.40 
604417 2344 0 100.00 0 100.00 0 100.00 
604418 277 0 100.00 0 100.00 0 100.00 
604419 83 0 100.00 0 100.00 0 100.00 
604420 4770 0 100.00 0 100.00 0 100.00 
Average % improvement   89.09   89.09   88.74 

Average CPU   142.84   167.95   161.65 
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Table 19 Comparison of Diversification Structures for 40 jobs-2 machines 

(tenure multiplier = 1000) 

 40 JOBS - 2 MACHINES 

 kS-kM-kL 0.5 0.5 0.5 

 Cycle String M M M 

 
Strategies low + 

diversification 
low + 

diversification 
low + 

diversification 

 
Phase 

Criterion 2000 5000 3000 

 

Non-
improving 
Iterations  

5000 8000 7500 

Problem EDD Initial best % impr best % impr best % impr 
40241 20363 14079 30.86 14079 30.86 14079 30.86 
40242 9452 3946 58.25 3946 58.25 3946 58.25 
40243 9003 3335 62.96 3335 62.96 3335 62.96 
40244 15640 10095 35.45 10095 35.45 10095 35.45 
40245 30372 19748 34.98 19748 34.98 19748 34.98 
40246 55152 27362 50.39 26372 52.18 26372 52.18 
40247 51380 18585 63.83 18565 63.87 18565 63.87 
40248 63959 37718 41.03 37658 41.12 37789 40.92 
40249 8925 1055 88.18 1055 88.18 1055 88.18 
402410 6640 1270 80.87 1038 84.37 1038 84.37 
402411 4485 1777 60.38 1726 61.52 1726 61.52 
402412 15563 8288 46.75 8331 46.47 8331 46.47 
402413 23639 8382 64.54 8382 64.54 8382 64.54 
402414 13427 5869 56.29 5869 56.29 5869 56.29 
402415 46894 22125 52.82 22134 52.80 22378 52.28 
402416 79365 43502 45.19 43502 45.19 43502 45.19 
402417 27271 15901 41.69 15816 42.00 15816 42.00 
402418 14459 5983 58.62 5866 59.43 5866 59.43 
402419 42442 28192 33.58 27258 35.78 27258 35.78 
402420 6246 2989 52.15 2934 53.03 2934 53.03 

Average % improvement   52.94   53.46   53.43 

Average CPU   150.50   224.10   204.15 
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Table 20 Comparison of Diversification Structures for 40 jobs-4 machines 

(tenure multiplier = 1000) 

 40 JOBS – 4 MACHINES 

 kS-kM-kL 0.5 0.5 0.5 

 Cycle String M M M 

 Strategies 

low + 
diversification 

low + 
diversification 

low + 
diversification 

 Phase Criterion 2000 5000 3000 

 
Non-improving 

Iterations  5000 8000 7500 

Problem EDD Initial best % impr best % impr best % impr 
40441 1638 0 100.00 0 100.00 0 100.00 
40442 206 0 100.00 0 100.00 0 100.00 
40443 207 0 100.00 0 100.00 0 100.00 
40444 0 0 - 0 - 0 - 
40445 124 0 100.00 0 100.00 0 100.00 
40446 607 0 100.00 0 100.00 0 100.00 
40447 5389 1056 80.40 922 82.89 1100 79.59 
40448 1640 48 97.07 68 95.85 68 95.85 
40449 1539 0 100.00 0 100.00 0 100.00 
404410 821 0 100.00 0 100.00 0 100.00 
404411 665 0 100.00 0 100.00 0 100.00 
404412 0 0 - 0 - 0 - 
404413 9993 3071 69.27 2851 71.47 3201 67.97 
404414 6547 2704 58.70 2704 58.70 2704 58.70 
404415 6171 1445 76.58 1388 77.51 1388 77.51 
404416 123 0 100.00 0 100.00 0 100.00 
404417 0 0 - 0 - 0 - 
404418 963 0 100.00 0 100.00 0 100.00 
404419 0 0 - 0 - 0 - 
404420 420 0 100.00 0 100.00 0 100.00 

Average % improvement   92.63   92.90   92.48 

Average CPU   28.94   36.10   28.90 
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Table 21 Diversification Strategy Results 

Comparison Criterion % Improvement CPU 

kS-kM-kL 0.5 0.5 0.5 0.5 

Cycle String M M M M 

Strategies low 
low+ 

diversification low 
low+ 

diversification 

Non-improving Iterations  5000 8000 5000 8000 

No. of 
non-zero 
solutions  

No. of Better 
Solutions 
Found by 

Diversification 

40/2 53.28 53.46 145.15 224.10 20 3 
40/4 92.90 77.28 28.45 36.10 5 0 
60/2 57.38 57.86 490.90 826.85 20 7 
60/4 88.78 76.96 116.21 167.95 9 2 
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Table 22 Comparison of Intensification Structures for 60 jobs-2 machines 

 60 JOBS - 2 MACHINES 

 Strategies 
low+ 

intensification 

low + dynamic 
tenure 

+intensification 
low+ 

intensification 

low + dynamic 
tenure 

+intensification 

 
Intensification 

Strategy none none none none 

 
Number of Local 

Optima 3 3 2 2 
 Optima Window 200 200 300 300 

 
Intensification 

Stopping Criterion 1000 1000 1500 1500 
 kS-kM-kL 0.5 0.35-0.5-2 0.5 0.35-0.5-2 
 Cycle String M LMMSMM M LMMSMM 

 
Intensification 

Factor 1 1 1 1 

 
Non-improving 

Iterations  5000 5000 5000 5000 
Problem EDD Initial best % impr best % impr best % impr best % impr

60241 33133 14677 55.70 14350 56.69 14350 56.69 14667 55.73 
60242 20542 7129 65.30 6662 67.57 6662 67.57 7129 65.30 
60243 28152 17607 37.46 18341 34.85 18352 34.81 17607 37.46 
60244 140200 73009 47.93 73113 47.85 73113 47.85 73009 47.93 
60245 71646 36119 49.59 36851 48.57 36406 49.19 36119 49.59 
60246 110746 50529 54.37 50975 53.97 50975 53.97 50529 54.37 
60247 46177 26804 41.95 26804 41.95 26804 41.95 26804 41.95 
60248 20853 8060 61.35 8087 61.22 8087 61.22 8060 61.35 
60249 43017 17339 59.69 17695 58.87 17695 58.87 17339 59.69 
602410 62912 21832 65.30 21518 65.80 21518 65.80 21832 65.30 
602411 47295 11204 76.31 11334 76.04 11334 76.04 11204 76.31 
602412 30482 14376 52.84 14080 53.81 14080 53.81 14376 52.84 
602413 37630 12978 65.51 13185 64.96 13185 64.96 12978 65.51 
602414 22084 7212 67.34 7048 68.09 7048 68.09 7212 67.34 
602415 36844 20293 44.92 20017 45.67 20017 45.67 20293 44.92 
602416 47951 23883 50.19 24047 49.85 24047 49.85 23883 50.19 
602417 22807 12259 46.25 13874 39.17 13874 39.17 12259 46.25 
602418 102449 39875 61.08 39989 60.97 39989 60.97 39875 61.08 
602419 3739 666 82.19 256 93.15 256 93.15 666 82.19 
602420 67564 24454 63.81 23612 65.05 23612 65.05 24454 63.81 

Average % improvement   57.45   57.70   57.73   57.46 

Average CPU   683.75   775.60   761.35   722.30 
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Table 23 Comparison of Intensification Structures for 60 jobs-4 machines 

 60 JOBS - 4 MACHINES 

 Strategies 
low+ 

intensification 

low + dynamic 
tenure 

+intensification 
low+ 

intensification 

low + dynamic 
tenure 

+intensification 

 
Intensification 

Strategy none none none none 

 
Number of Local 

Optima 3 3 2 2 
 Optima Window 200 200 300 300 

 
Intensification 

Stopping Criterion 1000 1000 1500 1500 
 kS-kM-kL 0.5 0.35-0.5-2 0.5 0.35-0.5-2 
 Cycle String M LMMSMM M LMMSMM 

 Intensification Factor 1 1 1 1 

 
Non-improving 

Iterations  5000 5000 5000 5000 
Problem EDD Initial best % impr best % impr best % impr best % impr 

60441 1297 0 100.00 0 100.00 0 100.00 0 100.00 
60442 14307 3451 75.88 3913 72.65 3913 72.65 3451 75.88 
60443 5784 727 87.43 512 91.15 512 91.15 727 87.43 
60444 0 0 - 0 - 0 - 0 - 
60445 6915 2777 59.84 2777 59.84 2737 60.42 2777 59.84 
60446 2256 399 82.31 364 83.87 364 83.87 399 82.31 
60447 12188 4744 61.08 5029 58.74 5029 58.74 4744 61.08 
60448 1110 0 100.00 0 100.00 0 100.00 0 100.00 
60449 3284 0 100.00 43 98.69 43 98.69 0 100.00 
604410 17494 4947 71.72 4975 71.56 4975 71.56 4981 71.53 
604411 11429 4755 58.40 4706 58.82 4553 60.16 4700 58.88 
604412 2114 0 100.00 0 100.00 0 100.00 0 100.00 
604413 1410 0 100.00 0 100.00 0 100.00 0 100.00 
604414 1815 0 100.00 0 100.00 0 100.00 0 100.00 
604415 230 0 100.00 0 100.00 0 100.00 0 100.00 
604416 3614 215 94.05 123 96.60 123 96.60 357 90.12 
604417 2344 0 100.00 0 100.00 0 100.00 0 100.00 
604418 277 0 100.00 0 100.00 0 100.00 0 100.00 
604419 83 0 100.00 0 100.00 0 100.00 0 100.00 
604420 4770 0 100.00 0 100.00 0 100.00 0 100.00 

Average % improvement   88.98   89.05   89.15   88.79 

Average CPU   192.50   190.85   199.50   191.50 
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Table 24 Comparison of Intensification Structures for 40 jobs-2 machines 

 40 JOBS - 2 MACHINES 

 Strategies 
low+ 

intensification 

low + dynamic 
tenure 

+intensification 
low+ 

intensification 

low + dynamic 
tenure 

+intensification 

 
Intensification 

Strategy none none none none 

 
Number of Local 

Optima 3 3 2 2 
 Optima Window 200 200 300 300 

 
Intensification 

Stopping Criterion 1000 1000 1500 1500 
 kS-kM-kL 0.5 0.35-0.5-2 0.5 0.35-0.5-2 
 Cycle String M LMMSMM M LMMSMM 

 
Intensification 

Factor 1 1 1 1 

 
Non-improving 

Iterations  5000 5000 5000 5000 
Problem EDD Initial best % impr best % impr best % impr best % impr 

40241 20363 14079 30.86 14079 30.86 14079 30.86 14079 30.86 
40242 9452 3946 58.25 3946 58.25 3946 58.25 3946 58.25 
40243 9003 3335 62.96 3335 62.96 3335 62.96 3335 62.96 
40244 15640 10095 35.45 10095 35.45 10095 35.45 10095 35.45 
40245 30372 19748 34.98 19703 35.13 19703 35.13 19703 35.13 
40246 55152 26372 52.18 26807 51.39 26372 52.18 26807 51.39 
40247 51380 18565 63.87 18565 63.87 18565 63.87 18565 63.87 
40248 63959 37658 41.12 37513 41.35 37658 41.12 37513 41.35 
40249 8925 1055 88.18 1055 88.18 1055 88.18 1055 88.18 
402410 6640 1038 84.37 1038 84.37 1038 84.37 1038 84.37 
402411 4485 1726 61.52 1726 61.52 1726 61.52 1726 61.52 
402412 15563 8199 47.32 8288 46.75 8199 47.32 8288 46.75 
402413 23639 8382 64.54 8382 64.54 8382 64.54 8382 64.54 
402414 13427 5869 56.29 5955 55.65 5860 56.36 5955 55.65 
402415 46894 22190 52.68 21712 53.70 22190 52.68 21712 53.70 
402416 79365 43502 45.19 43502 45.19 43502 45.19 43502 45.19 
402417 27271 15816 42.00 15976 41.42 15816 42.00 15976 41.42 
402418 14459 5866 59.43 6019 58.37 5866 59.43 6019 58.37 
402419 42442 27258 35.78 27258 35.78 27258 35.78 27258 35.78 
402420 6246 2934 53.03 2934 53.03 2934 53.03 2934 53.03 

Average % improvement  53.50  53.39  53.51  53.39 

Average CPU  218.40  183.00  224.70  194.35 
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Table 25 Comparison of Intensification Structures for 40 jobs-4 machines 

 40 JOBS - 4 MACHINES 

 Strategies 
low+ 

intensification 

low + dynamic 
tenure 

+intensification 
low+ 

intensification 

low + dynamic 
tenure 

+intensification 

 
Intensification 

Strategy none none none none 

 
Number of Local 

Optima 3 3 2 2 
 Optima Window 200 200 300 300 

 
Intensification 

Stopping Criterion 1000 1000 1500 1500 
 kS-kM-kL 0.5 0.35-0.5-2 0.5 0.35-0.5-2 
 Cycle String M LMMSMM M LMMSMM 

 Intensification Factor 1 1 1 1 

 
Non-improving 

Iterations  5000 5000 5000 5000 
Problem EDD Initial best % impr best % impr best % impr best % impr 

40441 1638 0 100.00 0 100.00 0 100.00 0 100.00 
40442 206 0 100.00 0 100.00 0 100.00 0 100.00 
40443 207 0 100.00 0 100.00 0 100.00 0 100.00 
40444 0 0 - 0 - 0 - 0 - 
40445 124 0 100.00 0 100.00 0 100.00 0 100.00 
40446 607 0 100.00 0 100.00 0 100.00 0 100.00 
40447 5389 914 83.04 914 83.04 914 83.04 914 83.04 
40448 1640 116 92.93 58 96.46 66 95.98 116 92.93 
40449 1539 0 100.00 0 100.00 0 100.00 0 100.00 
404410 821 0 100.00 0 100.00 0 100.00 0 100.00 
404411 665 0 100.00 0 100.00 0 100.00 0 100.00 
404412 0 0 - 0 - 0 - 0 - 
404413 9993 3035 69.63 2851 71.47 2851 71.47 3035 69.63 
404414 6547 2704 58.70 2704 58.70 2704 58.70 2704 58.70 
404415 6171 1445 76.58 1388 77.51 1388 77.51 1445 76.58 
404416 123 0 100.00 0 100.00 0 100.00 0 100.00 
404417 0 0 - 0 - 0 - 0 - 
404418 963 0 100.00 0 100.00 0 100.00 0 100.00 
404419 0 0 - 0 - 0 - 0 - 
404420 420 0 100.00 0 100.00 0 100.00 0 100.00 

Average % improvement   92.55   92.95   92.92   92.55 

Average CPU   29.15   53.50   43.60   29.75 
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Table 26 Intensification Strategy Results 

Comparison Criterion % Improvement CPU 

kS-kM-kL 0.5 0.5 0.5 0.5 

Cycle String M M M M 

Strategies low 
low+ 

intensification low 
low+ 

intensification 

Non-improving Iterations  5000 8000 5000 8000 

No. of 
non-zero 
solutions  

No. of Better 
Solutions 
Found by 

Intensification 

40/2 53.28 53.46 145.15 224.70 20 5 
40/4 92.90 77.28 28.45 43.60 5 2 
60/2 57.38 57.86 490.90 761.35 20 12 
60/4 88.78 76.96 116.21 199.50 9 5 
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Table 27 Best Tabu Search Results  

Problem Best Value  Problem Best Value  Problem Best Value  Problem Best Value  
40241 14079 40441 0 60241 14205 60441 0 
40242 3946 40442 0 60242 6528 60442 2737 
40243 3335 40443 0 60243 17296 60443 155 
40244 10095 40444 0 60244 72406 60444 0 
40245 19695 40445 0 60245 34640 60445 2591 
40246 26372 40446 0 60246 50492 60446 339 
40247 18565 40447 914 60247 26660 60447 4744 
40248 37513 40448 48 60248 8042 60448 0 
40249 1055 40449 0 60249 16790 60449 0 
402410 1038 404410 0 602410 20943 604410 4626 

402411 1726 404411 0 602411 11204 604411 4423 
402412 8199 404412 0 602412 14080 604412 0 
402413 8382 404413 2807 602413 12806 604413 0 
402414 5860 404414 2704 602414 6874 604414 0 
402415 21712 404415 1388 602415 20017 604415 0 
402416 43502 404416 0 602416 23883 604416 58 
402417 15816 404417 0 602417 12222 604417 0 
402418 5866 404418 0 602418 38948 604418 0 
402419 27258 404419 0 602419 164 604419 0 
402420 2934 404420 0 602420 23514 604420 0 

 

  


