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ABSTRACT

GENETIC ALGORITHM APPROACH TO PARALLEL MACHINE
TOTAL TARDINESS PROBLEM

In this thesis, an adaptive control mechanism to reduce the parameter dependence of
a Basic Genetic Algorithm (GA) is developed. The approach is implemented over the
Parallel Machine Total Tardiness problem (PMTT), which consists of a set of independent
jobs to be scheduled on a number of parallel processors to minimize total tardiness. As this
study considers the generic version of PMTT, distinct ready times, processing times, due
dates and sequence dependent setup times for each job are incorporated. The NP-hard

nature of the problem renders it a challenging area for research.

Hence, the motivation of this study has been to explore the ability of Genetic
Algorithms and develop several adaptive control mechanisms to overcome the difficulties
superimposed on the traditional parallel machine scheduling problem. In order to develop a
robust GA mechanism, the key elements of the metaheuristic such as generation type,
initial population structure, parent selection, crossover and mutation are investigated.
Based on a Basic Genetic Algorithm, adaptive control mechanisms are implemented,
which are structured over some parameters that are found to be critical for the GA

performance.

The performance evaluation for the strategies developed is done on a set of problems
obtained from the literature, where the same problems are addressed in two different
studies, one consisting of a GA approach and the other study consisting of a deterministic
Tabu Search approach to the problem. The GA approach developed is extensively tested.
As a result, it is seen that the adaptive GA approach developed in this study yields good
quality results with respect to the optimal/best-known values reported in the literature.
Also, some of the best-known results reported in the literature are further improved, which

is a notable achievement from the GA point of view.



OZET

PARALEL MAKINA TOPLAM ARTI GECIKME PROBLEMINE
GENETIK ALGORITMA YAKLASIMI

Bu tezin konusu olan g¢alismada Genetik Algoritmalarin (GA) parametre
bagimhiliklarin1 azaltmak i¢in uyarlanimli bir kontrol mekanizmasi1 gelistirilmistir.
Gelistirilen yaklasim, bir takim bagimsiz isin birkag¢ parallel islemci {izerinde toplam arti
gecikmeyi enkiicliklemek amaciyla ¢izelgelenmesinden olusan Paralel Makina Toplam
Art1 Gecikme problemi (PMTAG) iizerine uygulanmistir. Bu ¢alisma, PMTAGnin en genel
seklini ele aldigindan her is i¢in sifirdan farkli ve ayri termin tarihleri, sisteme giris
zamanlari, islem zamanlar1 ve dizine bagh is hazirlik zamanlar1 dahil edilmektedir. NP-Zor

yapist nedeniyle problem, ilging ve iddial1 bir arastirma konusu haline gelmistir.

Bunlara bagli olarak, bu ¢alismanin motivasyonu Genetik Algoritmalarin 6zellik ve
yeterliklerini inceleyerek cesitli uyarlanimli kontrol mekanizmalar gelistirmek yoniinde
geleneksel paralel makina cizelgeleme probleminin getirdigi zorluklar1 agmaktir. Saglam
bir GA mekanizmasi gelistirmek icin, meta-hiiristik yontemin jenerasyon tipi, baslangic
toplumunun yapisi, ana-baba secimi, gen kesistirme ve mutasyon gibi temel Ogeleri
incelenmistir. Basit bir Genetik Algoritmanin performansi i¢in kritik olan bir takim

parametreler baz alinarak uyarlanimli kontrol mekanizmalar1 gelistirilmistir.

Gelistirilen yontemlerin performans degerlendirmesi, literatiirden alinmig ve biri
deterministik Tabu Arama, digeri de Genetik Algoritmalardan olusan iki ayr1 ¢alisma ile
ele alinmis birtakim problemler iizerinde yapilmistir. Bu tezin konusu olan GA yaklasimi
ayrintili deneylerle incelenmistir. Sonug olarak, gelistirilen uyarlanimli GA ydnteminin
literatiirde yayinlanan “bilinen en iyi” veya “en iyi” c¢ozilimlere gore yiiksek kalitede
sonuglar gelistirdigi goriilmistiir. Bunun yanisira, literatiirde yayinlanan bazi “bilinen en
1yi” sonuglar daha iyi ¢oziimler bulunarak gelistirilmistir. Elde edilen gelistirilmis

¢Oziimler, GA agisindan oldukg¢a 6nemli bir basar1 ve kazanimdir.
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1. INTRODUCTION AND PROBLEM DEFINITION

The problem addressed in this thesis is the Parallel Machine Total Tardiness Problem
(PMTT), a problem frequently encountered in the industry. The classical parallel machine
total tardiness problem (PMTT) can be stated as follows: There are n jobs to be processed
on m continuously available identical parallel machines. Each job is processed on the given
machine for the time duration that is called the processing time of that operation. Each
machine can process only one job at a time, and each job can only be processed on only
one machine. The aim is to minimize the cost of processing these jobs by finding a suitable
processing order on each machine. Hence, a cost function reflecting the measure of
goodness of each solution alternative is needed. Due date related objectives are common
and often, the objective is to determine a schedule such that total tardiness is minimized,

where tardiness of a job is the amount of time its completion time exceeds its due date.

Having outlined the most general description of the problem as such, it is necessary

to introduce some fundamental concepts, characteristics and assumptions.

The variables that define a scheduling problem need to be mentioned next. The
problem definition starts with a set of jobs, n, that can be indexed as i = 1,2,3,...,n, to be
processed on a set of machines, m, indexed as j = 1,2,3,...,m. Hence, for each job i, the

following defining variables are to be specified.

* 1i: This term defines the earliest time that the processing of that job can begin and is
called the ready time or release time of each job i. Therefore, this is the time at which
the job is released into the shop.

* pi: This is the processing time of each job on any of the machines, unless there are
differences in the machines, like technology differences. In the latter case the
processing of a given job takes up different amounts of time on each machine and
therefore requires a second index for the processing time of the job to indicate which

type of machine the job is being processed on.



* sj: This parameter defines the sequence dependent setup time of the job on any given
machine, meaning that the machine would require “s;;” time units of setup if job 1 is
to be processed immediately after job k.

* S;: This parameter defines the slack time of the job on any given machine, defined as

di—pi—t.

To completely define the problem, it is important to know whether the problem
considered is static or dynamic. In static problems, a certain number of jobs arrive to the
job shop simultaneously, where the shop is idle and ready to start processing immediately.
In dynamic job arrivals, the shop is continuous. However, job arrivals can be either
stochastic, which means that job arrivals can occur at any time throughout the operation of
the machines, or deterministic, in which case the arrivals are dynamic but the arrival times
are all known and no stochastic intermittence is allowed [2]. In this study, the problem

addressed is the deterministic dynamic parallel machine scheduling problem.

In most studies from the literature the general assumption is that the machines are
identical, all jobs are available at time zero and setup times do not exist. These
assumptions are far too simplistic when confronted with the real world situations. Actually,
in most real world problems there exist distinct job ready dates, uniform parallel machines
that are capable of processing these jobs at different speeds (i.e. new machines versus old
machines) and sequence dependent setup times. Therefore in this study, these features are
also incorporated into the model to approach the problem to real world situations at the

expense of complicating the problem with respect to the classical one.

In summary, this study is concerned with independent jobs to be scheduled on a set
of uniform, parallel machines with the total tardiness measure as the optimization criterion.
The jobs have their individual processing times, pj, and due dates, d; and the problem is
deterministically dynamic, in that the jobs have predefined, distinct and non-zero ready
times. Furthermore, sequence dependent setup times between consecutive jobs on each
machine are incorporated in the problem definition. The objective is to minimize the total
tardiness of all the jobs, denoted by XT;, where T; is the respective tardiness of job i

calculated as T; = max {0, C; - d;}, where C; is the completion time of job 1.



Based on this detailed model definition, it is necessary to develop a suitable solution
method for the problem. It is known that each scheduling problem is an optimization
problem over the set of active schedules, but this set is so large that it does not allow the
option of complete enumeration as a problem solving strategy [3]. The cardinality of a
scheduling problem is the most important factor that restricts the applicability of complete
enumeration as a solution technique. For a general scheduling problem with n jobs and m
machines the cardinality has an upper bound of (n!)", and even for very small values of n
and m, the cardinality becomes very large and grows exponentially with increasing values
of these parameters. Therefore, other means of tackling the problem are necessary. There
are many different methods of attacking the problem, but the feasibility of the choice of
method depends on the complexity of the problem. Therefore, knowing whether a problem
1s easy or hard from the complexity point of view is essential for determining the solution
approach that will be suitable. The PMTT problem is NP-hard, even for a single machine
[4]. Therefore, exact methods that become computationally infeasible with increasing
problem size are limited to special cases like common due dates and equal processing
times. There is a large class of heuristics that are based on list scheduling where the jobs
are first prioritized according to some rule and then dispatched in this order to the machine

with the earliest finishing time.

Another class of heuristic techniques consists of neighborhood search strategies,
which can get very close to the optimal at reasonable computational efforts. These are
simple strategies that perform intensive search by trying to improve the current solution as
much as possible at each stage. Actually, they are rather myopic, but extensions to
neighborhood search strategies have been developed under the name “Metaheuristics”. The
most popular techniques among metaheuristics are Tabu Search, Genetic Algorithms and

Simulated Annealing.

The idea behind Tabu Search (TS) is actually very simple in that it tries to avoid
being caught in local optima present in the solution space. When a local optimum is
reached, Tabu Search selects the best available move even if it deteriorates the objective
function value. However, the next move to be chosen will take the search back to the local

optimum, since it will be the best move around. Hence, that particular move back to the



local optimum is prohibited so that the search can proceed to other unexplored regions of

the search space.

Simulated Annealing (SA) is a method constructed in analogy with the cooling and
re-crystallization process of hot materials. Again, it is not always the apparent best move
that is selected but the best move with highest probability, the second best move with next
highest probability and so forth [2]. These probabilities decrease exponentially based on
the size of the improvement given by each move. A temperature factor, which simulates
the effect of temperature in the annealing process is used and regulating the temperature is

the way of escaping from local optima in Simulated Annealing.

Genetic Algorithms (GA) are artificial intelligence techniques that simulate the
natural evolutionary process. The general strategy is to generate a population consisting of
individuals, where each individual constitutes a solution to the problem at hand and is
represented by a chromosome encoding. The chromosomes are made of genes, which can
be considered to be the building blocks and carriers of the genetic information. Among the
population members, the fittest individuals are allowed to reproduce and the new offspring
inherit the characteristics of the parents. The parents are recombined genetically by
crossover and the genetic information transmitted from the parents is sometimes prone to
mutation, which consists of small changes that occur unpredictably in the genotype. The
aim is to increase the average fitness of the population from one generation to the next,
where fitness is a measure of solution quality. Genetic Algorithms have proven quite
suitable for scheduling problems. In scheduling context, each chromosome either
constitutes a particular sequence of jobs, or contains the information/instructions to
construct a particular sequence of jobs. The fitness of the chromosome is calculated based
on the objective function value. The parents are selected to reproduce with a given
probability and this probability of selection is fitness based. The new children formed
constitute the new generation and in this manner, the population will eventually converge

to a population of good schedules, hopefully containing the global optimum as well.

This thesis presents a GA application to the above defined generalized version of
Parallel Machine Total Tardiness problem (PMTT). GAs have a high number of

parameters and complementary strategies that can be regulated for high performance, but



this introduces the difficulty of tailoring the strategies and fine-tuning the parameters, not
only for a given problem but also with respect to problem size. Another challenge is to
prevent premature convergence of GA. In this thesis, several control mechanisms that try
to control the population diversity in order to overcome premature convergence are

developed and incorporated in GA.

The next section presents a literature survey and the theoretical grounds of Genetic
Algorithms. Next, the details of the Basic Genetic Algorithm developed for this thesis and
its experimentation follow. Finally, the adaptive control over the Basic GA approach and
the experimental results are presented. The thesis ends with the conclusions derived from

this study.



2. LITERATURE SURVEY

This section summarizes general Genetic Algorithm approaches to various types of
combinatorial problems as well as metaheuristic approaches to the Parallel Machine

Scheduling problem in particular.

A paper by Grefenstette [5] shows that GAs are suitable for fine tuning the
parameters of the optimization algorithms used as well as the optimization of the complex
system itself. Liepins and Hilliard [6] define GAs in their context: how and why they work,
why they fail and the methods to overcome their undesirable behavior are the questions
they address in their paper. In addition, they provide the basics of Genetic Algorithms like

schemas, building blocks, and implicit parallelism.

One of the early scheduling applications of GA consists of a study by Reeves [7],
where the permutation flow shop sequencing problem is treated on an enhanced version of
simple GA using C1 crossover, adaptive mutation rate and a seeded population. This study
showed that GA performed very well with increasing problem size. The same GA
outperformed some naive neighborhood searches and produced results comparable to a

simple tabu search heuristic in another study by Reeves [8].

A study by Ahuja et al. [9] defines a greedy genetic algorithm for the quadratic
assignment problem (QAP), where they investigate several enhancements to GAs and
illustrate them over the QAP since they claim that GAs in their elementary forms are not
competitive with other heuristic algorithms like simulated annealing and tabu search. They
improve the overall performance of the GA with the greedy nature of these enhancements
and stress that overuse of such greedy methods diminishes the diversity in the population.
They incorporate various ideas into their greedy GA and test each of them separately to
study the marginal effect over the algorithm performance. They compare their results on all
benchmark instances in QAPLIB, a well-known library of QAP instances and obtain the

best-known solution in most of the problems.



Liu and Tang [10] propose a modified genetic algorithm (MGA) for single machine
scheduling with ready times. The algorithm they propose improves the simple genetic
algorithm by introducing (1) a filtering step to filter out the worst solutions in each
generation and fill their positions with the best solutions of the previous generations, and
(2) a selective cultivation step to cultivate the most promising individual when no
improvement is made for several generations. Their results show that the modified genetic
algorithm is significantly better than the simple genetic algorithm. The MGA also
outperforms three very effective special purpose heuristics at the expense of longer

computation time.

Another Genetic Algorithm implementation is that by Ulusoy et al. [11]. In their
study, the simultaneous scheduling of machines and automated guided vehicles (AGVs) is
considered with the aim of minimizing the makespan. They present a special uniform
crossover operator that produces one offspring from two parents while transferring any
patterns of operation sequences and/or AGV assignments that are present in both parents to
the child. Their results indicate that in the majority of the problems the optimum is
reached. Comparison with the time window approach shows that the GA performs better in

most of the problems.

Hybrid approaches to the Genetic Algorithm strategy are also available in the
literature. For instance, Cheng and Gen [12] investigate hybrid genetic algorithms
(memetic algorithms) to solve the parallel machine-scheduling problem where the aim is to
minimize the maximum weighted absolute lateness. They propose to use GAs to evolve the
job partition and then apply a local optimizer to adjust the job permutation to push each
chromosome to climb to its local optima. They show that the hybrid genetic algorithm
outperforms the GAs and the conventional heuristics. A memetic algorithm for the total
tardiness SMS problem is that developed by Franca ef al. [13]. In their study they consider
due dates and sequence dependent setup times. The main contributions with respect to the
implementation of the hybrid population approach are a hierarchically structured
population conceived as a ternary tree and the evaluation of three recombination operators.
They develop several neighborhood reduction schemes to introduce efficiency in the

search procedure. They also compare a pure genetic approach and the memetic algorithm



against a multi-start algorithm employing the all-pairs neighborhood and two constructive

heuristics over a set of randomly generated problems.

Another hybrid heuristic genetic algorithm is proposed by Zhou et al. [14] for the job
shop scheduling problem, who claim that in order to make GA more efficient and practical,
the knowledge relevant to the problem to be solved is helpful. They devise a hybrid
heuristic for scheduling n jobs on m machines with the aim of minimizing the makespan
where the processing of each job consists of m operations performed on these machines in
a specified sequence. They integrate list scheduling heuristics such as shortest processing
time (SPT) and most work remaining (MWKR) into the process of genetic evolution. In
addition, they adopt the neighborhood search technique (NST) as an auxiliary procedure to
improve the solution performance. They show that this new algorithm is effective and
efficient compared to traditional GA, simulated annealing and the heuristic of

neighborhood search.

Other metaheuristic approaches are also available in the literature when scheduling
problems in general are considered. For instance, a Simulated Annealing and Tabu Search
mixture for the scheduling tardiness problem is developed by Adenso-Diaz [15], where the
effect of the mixed algorithm is tested on a multi job-multi machine environment where the
jobs have distinct processing times, due dates and weights. Their results validate the use of
the algorithm. Barnes and Laguna [16] solve the multiple-machine weighted flow time
problem using tabu search. They obtain high quality results and show the robustness of
their method with respect to parameter settings. They also show that the computational

requirements show only a modest growth with respect to problem size.

Min and Cheng [17] present a GA approach for the minimization of makespan in the
case of scheduling identical parallel machines. In their computation al studies they show
that the GA proposed is efficient and fit for larger scale identical parallel machine
scheduling problems. Also, they state that the quality of the solutions obtained is
advantageous over other heuristic procedures and Simulated Annealing in particular.
Crauwels et al. [18] present local search heuristics for the SMS problem with batching to
minimize the number of late jobs and they employ TS, SA, GA and multi-start descent and
they report that the best results are obtained with GA.



Although studies on metaheuristic approaches to scheduling problems in general is
quite abundant, when jobs are allowed to have distinct arrival times as well as due dates,
different processing rates on machines and sequence dependent setup times, the literature
becomes really sparse. There are few studies reported on this more general problem.
Serifoglu and Ulusoy [19] present a genetic algorithm for the non-preemptive parallel
machine scheduling problem where they consider sequence dependent setup times and try
to minimize the sum of the weighted earliness and tardiness values of all the jobs. Also, the
problem they consider is dynamic where each job has its own distinct ready time. They
employ two GA approaches; one with a crossover operator developed to solve multi-
component combinatorial optimization problems and the other with no crossover operators.
They develop a new crossover called Multi-component uniform order based crossover
(MCUOX). Balakrishnan et al. [20] also incorporate sequence dependent setups and
distinct due dates, ready times and earliness/tardiness costs for each job in their study,
where they treat the jobs with uniform parallel machines that are capable of processing
jobs at different speeds. They propose a compact mathematical model to solve small sized

(up to 10 jobs) problems.

A recent study on the general parallel machine scheduling problem is that by
Cochran et al. [21], where they propose a two-stage multi-population genetic algorithm
(MPGA) to solve the parallel scheduling problem with multi-objectives. They combine the
multi-objectives via the multiplication of the relative measure of each objective. They
arrange the solutions of the first stage into several sub-populations, which become the
initial populations for the second stage. They employ two different objectives: makespan
and total weighted tardiness. They also extend their MPGA to apply over three objective
scheduling problems and show that their algorithm performs better than its counterpart in
the literature. Also, Glass et al. [22] present a study on unrelated parallel machine
scheduling using local search, where they state that although the results of extensive
computational tests indicate that the solution quality of GA is poor, when a hybrid method
in which descent is incorporated in the GA is employed, the results obtained are

comparable with SA and TS.

Bilge et al. [23] devise a Tabu Search algorithm for parallel machine total tardiness

problem, where they develop a totally deterministic TS approach. They conduct their
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experiments on the set of problems that were introduced by Ulusoy and Serifoglu [19]. In
their study, they obtain results that are much superior to the ones available in the literature.
The neighborhood used in this TS has a “hybrid” structure in which the complete “insert
neighborhood” is enlarged by including swap moves for jobs that are on different machines
only. Hence, the neighborhood also includes moves that create different sequences without
changing the number of jobs on machines. Also, they develop candidate list strategies for
situations where the neighborhood of a solution is large or its elements are expensive to
evaluate. Candidate list strategies are essential to restrict the number of solutions examined
on a given iteration and the purpose of these rules is to screen the neighborhood so as to
concentrate on promising moves at each iteration [23]. They develop three candidate list
strategies for the PMTT problem and report that the time performance and the quality of
the candidate list strategies are superior to the case when no candidate list strategy is

employed.
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3. BASIC GENETIC ALGORITHM FOR PMTT

The following subsections describe the Genetic Algorithm approach developed for
the PMTT problem addressed in this thesis. A general overview of the concepts and theory
of the metaheuristic are provided in Section 3.1. Following the overview, the details of the

strategy implemented for the Parallel Machine Total Tardiness Problem are provided.

3.1. Genetic Algorithms

Genetic Algorithms (GA) easily specified and well defined algorithms that
incorporate a probabilistic component. They provide means for exploring irregular and
poorly understood search spaces for complex problems. Hence, they are special artificial
intelligence techniques that can attack large-scale combinatorial optimization problems,
many of which are NP-Hard. They present approximate solutions in fairly good amounts of
time. They are general-purpose search methods that simultaneously explore and exploit the
search space and they have been successfully applied to various problems that could not be
solved by more conventional computational techniques. Holland developed the Genetic
Algorithm and presented his theoretical foundation. The motivation of his formulation was
based on the pressure of natural selection over sexual reproduction, which in conjunction,
led nature to develop species of high adaptation to their environment, over time.
Evolutionary theory foundations state that the needs and requirements of a continually
changing and complicated environment bring forth the necessity for adaptations that can
render a species fit for that environment. Hence, GAs imitate the natural evolution
phenomenon, and they constitute a class of search algorithms based on the mechanics of

natural selection and natural genetics [24].

GAs combine survival of the fittest among string structures with a structured but
randomized information exchange to form a search algorithm with the innovative style of
human search [24]. The key elements of a GA originate from the natural genetics
terminology. The central role played by the crossover operator for genetic recombination
was the major distinction between the earlier formulations. Mutation is defined within this

formulation as an infrequent operator that is used to preserve population diversity.
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There are many possible variants to the basic GA, but the fundamental mechanism
operates on a population of individuals, which are strings or chromosomes, made of genes
that carry the feature information of the chromosomes, arranged linearly. The mechanics of
a basic GA is very simple and involves only the process of copying strings and swapping
partial strings. However, the simplicity of the procedure does not reduce its power, and this
1s one of the most important attractions of the GA approach [24]. Each individual in the
population is evaluated for its fitness and a gene pool is formed. Genes are the major parts
that transmit information from the parents to the child and they allow the inheritance of
features. Then recombination and mutation are the basic operators introduced. In every
generation, a new set of individuals is formed from the old population by combining parts
of the fittest individuals in the old population. Hence, the individuals resulting from
Reproduction, Crossover and Mutation constitute the next generation’s population.
Reproduction is simply copying individual strings so that they can be used for producing
children. The strings to be copied are chosen with respect to their objective function
values, or fitness values in the population. Therefore strings with higher fitness values have
a higher probability of contributing to the production of offspring for the next generation

[24].

GAs are different from other search procedures in many ways. For instance, GAs
work with a coding of the parameter set instead of the parameters themselves [24]. It is
important to note that many optimization methods move from one single point in the
solution space to the next using some transition rule to make a choice for the next point.
These point to point methods however are vary dangerous for solution spaces containing
many local optima, for the risk of being trapped in one of them is quite high. GAs search
from a population of points and not just a single point in the entire solution space, and
since they work on a rich population of solutions simultaneously, they literally climb many
hills in parallel. This feature of Genetic Algorithms reduces the risk of being trapped in

local optima as compared to the other search methods that go from point to point [24].

However, the convergent behavior of GAs, which cannot guarantee optimality,
stands as a strong problem against the GA approach with respect to other optimization
grounds. There are ways to slow down or prevent this premature convergence.

Nevertheless, it should be noted that GAs work out interesting areas in the search space
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rather quickly. GAs cannot provide the guarantee of some more deterministic approaches,
but at the compensation of not sacrificing flexibility and globality in the search process.
This makes GAs more suitable for numerous problems that cannot be treated by techniques

that indeed guarantee optimality.

GAs use the objective function information, not derivatives or other information, and
this characteristic makes them actually blind, since they do not require any other
information while searching for better solutions. Finally, GAs employ probabilistic
transition rules, not deterministic rules, and they use random choices to guide the search to

regions of the search space that promise improvement [24].

Furthermore, if for the problem being handled, some convergent yet local search
methods exist, then an attitude to consider is the use of hybrid techniques where the search
starts with GA to sort out the interesting hills in the problem and then to climb the hills via

the locally convergent schemes once the GA determines the best regions [24].

3.2. Chromosome Encoding

The chromosome representation used in this study represents each job in the
schedule as a gene in the chromosome. Hence, each job in the schedule is coded in the
form of a gene and forms the genotype of the chromosome. The optimality criterion,
namely, the total tardiness of each schedule is reflected as the fitness of the chromosome,

and this in turn, constitutes what is known as the phenotype of the individual.

In this GA, a chromosome consists of (n+m-1) genes, where digits from one to n

(13 4

denote the jobs. The remaining (m-1) genes consist of “*”’s and are used to separate the
machines. Hence, in order to differentiate from one machine to the other on the
chromosome, an asterisk is used. By this means, the entire set of jobs can be encoded on a
single string in machine order. An example to depict this definition is provided in Figure

3.1.
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Sequence of jobs on each machine
Machine 1: 1-2-3
Machine 2: 4-5-6-7
Machine 3: 8-9
[L]2]3]*]4]5][6]7]*[8]9]

Figure 3.1. Chromosome encoding

3.3. Initial Population Generation

It i1s a well-known fact [24] that the structure of the initial population plays an
essential role in determining the efficiency of the Genetic Algorithm. However, most GA
implementations in literature employ randomly generated populations for initiation. An
enhancement that finds wide application is to feed some good solutions to the initial
population, usually consisting of some structured solutions obtained via some list
scheduling heuristics. By this means, the convergence of the GA is rendered more efficient
but at the same time, the quality of the local optimum to which the population will

converge is increased.

Based on the chromosome representation used in this study, given n jobs to be
scheduled on a single machine, there are n+(m-1) genes to be encoded on a given

chromosome. Therefore, initial population is randomly created by the following algorithm:

* Randomly select one of the n+(m-1) alleles to be encoded (for the n jobs and (m-1)
asterisks (*) used as machine schedule separators in the chromosomes).
* Place the selected allele in the first unfilled gene location on the chromosome.

* Repeat steps one and two until all n+(m-1) genes are encoded.

It is possible to feed some individuals into the population so that the initial
population contains individuals of known quality. The method used for the parallel
machine scheduling problem considered in this thesis is to feed some chromosomes whose

genotypes consist of encodings obtained via List Scheduling Heuristics (LSH), like Earliest
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Due Date (EDD), Shortest Processing Time (SPT), Earliest Ready Time (ERT) and
Shortest Slack Time (SST). These solutions are more structured and most probably of
higher quality as compared to the randomly generated population members. The number of
such solutions fed to the population is an important parameter to consider, since such an
approach poses the risk of heavily biasing the population to cause premature convergence
to some local optimum in the vicinity of the fed solutions. Therefore, the proportion of fed
individuals must be considered in proportion to the entire population. Also, the nature of
the fed solutions is very important. At this stage, the most important LSHs employed in
feeding the initial population need to be mentioned. SPT and EDD are the two main

heuristics employed for feeding in this study.

* SPT: A sequence that arranges the jobs in nondecreasing order of processing times is
called Shortest Processing Time, SPT.
* EDD: A sequence that arranges the jobs in nondecreasing order of due dates is called

Earliest Due Date, EDD.

Along EDD and SPT, other LSHs like ERT and SST are also used for feeding the
initial population. Hence, some good genetic information is inserted within the initial
population. This genetic information will function as the seed for the production of some

fitter and structured individuals.

3.4. Population Generation Approach

In this study, a different population generation approach, which is a different
mechanism for propagating the population from one generation to the next, is utilized. This
approach is called Transient Population Generation Scheme. The approach developed
introduces a transient phase within the transition from one generation to the next. The new
population consists of a mixture of the old population members and the new offspring and
by this means a greater chance of survival is given to the individuals from the previous

population.

Denoting the number of offspring by Nc and the size of the old population by N, the

Transient Population scheme operates as follows:
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* Produce the desired number of offspring, Nc, via crossover

* Form a transient population by combining the old population members with the new
offspring (hence, the transient population consists of (N+Nc¢) individuals)

e Sort the N+Nc individuals in the transient population with respect to their total
tardiness values

* Restore the original population size by eliminating Nc individuals from the sorted

transient population

The operating principle of this elimination scheme is depicted in Figure 3.2. In this
figure, the transient population consists of 150 individuals, where N, the population size is

equal to 100 and the number of offspring, Nc, is set to be 50.

Which Nc individuals will be eliminated is a crucial point in determining the
composition of the new population and a fraction of the old population will always reside
in the new population. Clearly, this property allows randomness in the composition of the
new population from generation to generation. In this study, in order to eliminate the Nc

individuals from the transient population, an elimination scheme is used.

Hence, by looking at Figure 3.2, it is seen that from the sorted transient population,
the worst two individuals are eliminated, after which a grid elimination pattern is used that
eliminates every other individual. The origin of the individuals in this sorted transient
population (old members or new offspring) is not known, and therefore the composition of
the remaining N individuals will also be unknown. Eventually, after all Nc individuals are
eliminated, there is always a fit portion of the transient population that is left untouched, or
preserved, to be included in the next population. The size of this preserved portion is a
function of the size of the original population and the number of offspring produced, and is

determined to be N-Nc+3 best individuals of the transient population.

By regulating the two population parameters N and Nc, the size of this untouched
portion of the transient population can also be regulated and this will regulate the speed of
convergence of the consecutive populations. The number of best individuals to be
transferred to the next generation affects the average fitness of the next generation as a

whole. Also, since the size of this untouched portion is determined by N-Nc+3, it can be
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argued that approaching Nc to N will decrease the quality of the population and suppress
the dominance of the best individuals that remain. On the other hand, the smaller the value
of Nc, the lower the chance of improving quality from one generation to the next, which
corresponds to stagnation since no work is done. Therefore a balance between N and Nc is

necessary.

[ 150 )
149
148

>‘ Best 53 individuals preserved

SORTED 1(')0

/

} Worst 2 individuals eliminated

TRANSIENT 99
POPULATION ;;‘/ <
96
consisting of 150 })5/
individuals 94
: > 48 individuals eliminated
N=100 :
Ne =350 6
4

Figure 3.2. Transient population elimination scheme

It is worth mentioning that preserving some portion of the transient population is not
the same as transporting a subset of the old generation to the new generation. The latter is

referred as population gap in the GA context.



18

3.5. Parent Selection

Parent selection is important in regulating the bias in the reproduction process.
Roulette Wheel Selection [25] is the parent selection scheme used in this study. In roulette
wheel selection, the evaluations of the chromosomes are converted to fitness values via
linear normalization. By this means, premature convergence is prevented by allowing each
individual to have a regulated share on the roulette wheel. The linearization scheme
employed in this study is called Ranking Roulette Wheel. The reason for this naming is
that the method converts the total tardiness values to fitness values by creating a ranking of
the total tardiness values. In other words, the total tardiness values are ranked so as to give
the population members linearly increasing shares on the roulette wheel. This share
increases linearly with the rank of each chromosome. The operating principle of Ranking

Roulette Wheel is depicted in Figure 3.3.

e [Initialization:

1. Sort the individuals in the population with respect to their total tardiness
values in non-increasing order and assign indices i, 1 = 1,2,3,...,N, where N
is the population size.

2. Calculate the fitness fj, for each individual with the following linear
normalization of the tardiness values: fi, = a + (i-1) x b, 1 = 1,2,3,...,N,
where a and b are the linear normalization parameters.

3. Sum the fitness of all population members to yield the sum of all fitness

values, F =2 f;

* Selection: Repeat for Nc iterations (Nc is the number of offspring)

4. Generate a random number, n, between 0 and the total fitness value, F.

5. The first population member that, when summed its fitness value with the
fitness values of all its successors yields a value that is greater than n, is
returned as the first parent.

6. This process is repeated from Step 4 to select the second parent.

Figure 3.3. Ranking roulette wheel
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Looking at Figure 3.3, it is seen that the fitness of each individual increases as its
index increases. An example to ranking roulette wheel is as shown in Table 3.1. Based on
the fitness values presented in Table 3.1, the sum of the fitness values of is F = 2.f; = 290
and Individual-3 has a probability of 30/290 of being selected whereas Individual-5 has a
probability of 90/290. Further, it should be mentioned that the fitness values are not
incremented when total tardiness value does not change from one individual to the other.
Therefore, equally ranked individuals are equally prioritized on the roulette wheel. This is
a very important property of the linearization scheme, which will be further exploited in

the diversity evaluation phase to be explained in further sections.

Table 3.1. Ranking roulette wheel, a =30, b =20

Sorted Individual Number

Individual-3

Individual-4

Individual-2

Individual-1

Individual-5

Sorted Tardiness Values 20000 15000 15000 500 200
Fitness Values, f 30 50 50 70 90
Range on the Roulette Wheel 1-30 31-80 81-130 131-200 201-290

In summary, the total tardiness “values” have no influence in the probabilistic
selection routine, since they are only used to create a ranking of the individuals. Therefore,
this method introduces some bias towards the fitter individuals, but this bias increases

linearly with the ranks of the individuals and not the tardiness values.

In order to employ the ranking roulette wheel defined in Figure 3.3, two parameters
need to be defined: a and b, which are the linear normalization parameters. For this study,

both of these parameters are set to be equal to one.

3.6. Crossover Operators

Two types of crossover operators are implemented and tested. These are the Patching
Crossover Operator and the Dynamic Patching crossover, which is an enhancement over
the patching crossover operator. Since the solution encoding scheme described in Section
3.1 incorporates the problem specific structure of the PMTT problem, the crossover
operators devised in this study do not require any repair mechanisms. The next subsections

provide the details of the crossover operators implemented in this thesis.
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3.6.1. Patching Crossover Operator

Patching crossover operator is based on the crossover operator used in [26], which
they call uniform order-based crossover. This crossover operator generates a template
binary string where the number of “1”’s and “0”’s are controlled. The template binary string
1s mapped on one of the parents, in which case those genes that are positioned in the same
locations with the “1”s in the template binary string are directly transported to the child
chromosome. The remaining idle gene locations in the child, which correspond to the
locations containing zeros in the template binary string, are filled with the genes in the

second parent. The algorithmic structure of this crossover operator utilized, is as given in

Figure 3.4.
1. Set the number “1”’s in the binary string to be generated to “p”
2. Randomly generate a binary string with p “1”’s as defined in step 1
3. Randomly choose two parents, Parent]l and Parent2, from the population
4. Copy the genes from Parentl corresponding to the locations of the “1”’s in

the binary string to the same positions in the child

Parentl  [1]2]3[*[4[5]6]7[*[8]9]

Binary [ 1[o0[o[1][o]1]o0[1[1]0]

ena (T[T [5[-[-[ 5[]

5. Cross out the genes from Parent2 copied from Parentl so that the repetition
of a gene in the new offspring is avoided.

paen2 [0 [F]7]7 6V 7]2[3]4]7]

6. Fill out the remaining idle gene locations with the uncrossed genes that
remain in Parent2 by preserving their gene sequence in Parent2.

Child | 1]9[7[*[6]5]2[3]*|8]4]

Figure 3.4. Algorithmic structure of patching crossover
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However, a gene that is assigned from the first parent cannot be assigned a second
time, son in order to prevent this, the genes assigned from the first parent are crossed out
from the second parent. Consequently, the uncrossed genes are inserted in the child
chromosome within the sequence they appear in the parent chromosome. In summary, the
binary string is used as a template to combine the genetic information and properties of the
two parents. Increasing the number of “1”’s in the binary string increases the similarity of
the offspring to the first parent since there will be an increased number of gene locations in
the child that match the allele of Parentl. Hence, as the number of “1”’s in the binary string
approaches the total number of genes in the chromosome, the child becomes more similar

to the first parent. An example to demonstrate this situation is presented in Figure 3.5.

* Binary string with 5 “1”s:

Parentl |1|2|3|*|4|5|6|7|*|8|9|

Pareniz  [9 [¥| ] 7[6 | F[¥]2]3]4]5]

Binaryl |1|0|0|1|0|1|0|0|1|1|0|

chiar [ 1]~ |- [*]-[5]-|-|*[8]-]

chidi  [1]9]7]*[6[s5]2]3]*[8]4]

* Binary string with 8 “1”s:

Parentl ‘1‘2‘3‘*‘4‘5‘6‘7‘*‘8‘9‘

Parentz | X7 |V 2]3 4]

Binary2 ‘1‘1‘0 ‘1‘0‘1‘1‘0‘1‘1‘1‘

ez [12[ =[]~ [5[6[-[*[3]"]

Child2 \1\2\7 \*\3\5\6\4\*\8\9\

Figure 3.5. Child formation with template binary string 1
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Looking at Figure 3.5, it is seen that the child produced by the template binary string
containing eight “1”s is more similar to the first parent. In summary, increasing the number
of “1”s in the binary string causes the offspring to be increasingly more similar to the first
parent and this causes minor changes to occur from one generation to the next. If on the
other hand, the number of “0”s is increased, then the number of locations in the child
matching the alleles in Parent]l will decrease and the child will be less similar to Parentl.
As the idle gene locations will be filled up with the remaining uncrossed genes in Parent2 a
mixed combination of genes will result. Therefore the child chromosome will neither

resemble Parentl nor Parent2.

In this study, a fixed number of “1”’s is selected for the generation of the template
binary string and utilized. This number is typically equal to [n+m-1]/2, where n is the

number of jobs and m is the number of machines considered in the problem.

3.6.2. Dynamic Patching Crossover Operator

In the patching scheme above, after copying the genes of Parentl, the remaining idle
locations are filled starting at the beginning of the gene string of Parent2. This corresponds
to the first machine of Parent2, and starts forming the child chromosome with the first
machine of Parent2. Hence, this scheme prioritizes the first machine of Parent2 while
forming the offspring and is most likely to prevent the jobs in the second or third machines
to be assigned on the first machine in the offspring. In order to overcome this shortcoming,
a new operating scheme is devised so as to allow each machine in Parent2 to be a possible
candidate for being the prioritized machine. Hence, at each crossover operation, a different
combination of machines from each parent is selected. Another way of explaining the
outlined procedure is the following. The pointer indicating the location from where each

parent will be traced is varied dynamically from child to child.

Varying the location of the pointer is simply varying the starting machine from
which gene assignments to the offspring are made. Reflecting this explanation to the
encoding scheme used in this study, this process is nothing else but to rearrange the

machine order in a given chromosome (Parentl or Parent2). This is depicted in Figure 3.6.
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If the pointer points Machine2 for Parentl, then the original chromosome,

Parentl ‘ Machinel ‘*‘ Machine2 |*| Machine3 ‘

takes the following pseudo form,

Parent]* Machine2 | * | Machine3 ‘ * ‘ Machinel

If the pointer indicates Machine3 for Parent2, then the chromosome

rearrangement is as follows:

Parent2 ‘ Machinel ‘*‘ Machine2 |*| Machine3 ‘

takes the following pseudo form,

Parent2* Machine3 | * | Machinel ‘ * ‘ Machine2

Figure 3.6. Machine rearrangement in patching crossover

The only constraint for this pointer is that it has to point the first job of a given
machine so that whichever machine combination is used, it is always the first job of any
one of the parents that is assigned first. In this manner not only are we preserving the job
location preferences (which depend on ready time, due date, processing time and slack
time of each job) on each machine, but we are also allowing the first few jobs of a given
schedule to become the first jobs of another machine. Hence, intermachine movements for
jobs are allowed and enhanced by providing care for the location preferences of the jobs
for total tardiness minimization. In order to illustrate this procedure, the example used to

demonstrate the Patch Crossover operator is used as depicted in Figure 3.7.

It is assumed that for the crossing over of these particular two parents the parent
machine combinations are selected to be Parent]-Machine2 and Parent2-Machine 3. Based
on this combination, the original parents have their machines rearranged so that their first
machines on their chromosome encodings are Machine2 for Parentl and Machine3 for

. . . 2
Parent2. In this manner, based on the number of machines in the chromosome, m
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combinations of machine prioritization are possible. The proposed mechanism is to
sequentially use each combination for new parent couple (i.e. for each crossover) so that
the selected parent-machine combination varies dynamically each time a new child is

produced.

l
Parentl |1|2|3|*|4|5|6|7|*|8|9|
d
Parent2 |9|8|*|7|6|1|*|2|3|4|5|

After rearranging the parents as Parent1* and Parent2*:

Binary (1jojoft[of1[ojo|1|1]|0]

Parent]* \4\5\6\7\*\8\9\*\1\2\3\

chia  [#]-[-[7[-[8]- - [1]2]-]
Parent2* M3MS‘*‘9M*W6M
Child (4]3[5]7]*[8]9]*|1]2]6|

Figure 3.7. Dynamic patching crossover operating scheme

Hence, each time a new child is to be produced, the next combination in the sequence
of combinations is used. To exemplify this dynamic pointer variation, the following
example with three machines is provided. After 9 children are produced, the process goes
back to the beginning of the parent-machine sequence so that combination 1 is used for the

production of child 10.
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Table 3.2. Machine prioritization sequence for 3 machines

Child 1 (Crossover 1) | (Parent]-Machinel )-(Parent2-Machinel)

Child 2 (Crossover 2) | (Parent]-Machinel )-(Parent2-Machine2)

Child 3 (Crossover 3) | (Parent]-Machinel )-(Parent2-Machine3)

Child 4 (Crossover 4) | (Parent]-Machine2)-(Parent2-Machinel)

Child 5 (Crossover 5) | (Parentl-Machine2)-(Parent2-Machine2)

Child 6 (Crossover 6) | (Parentl-Machine2)-(Parent2-Machine3)

Child 7 (Crossover 7) | (Parentl-Machine3)-(Parent2-Machinel)

Child 8 (Crossover 8) | (Parent]-Machine3)-(Parent2-Machine2)

Child 9 (Crossover 9) | (Parent]-Machine3)-(Parent2-Machine3)

3.7. Mutation for PMTT

The GA developed in this study, which applies a transient population methodology,
also brings an enhancement to the mutation operator. This enhancement is brought with
respect to the timing of mutation, and each child is mutated with a given probability as

soon as it is produced.

In this mutation scheme, the transient population is formed and sorted as explained
previously. Each of the Nc new offspring is mutated with a probability P(M), and then the
elimination phase is employed to eliminate Nc individuals from the transient population. A
short discussion is due regarding the operating principle of the mutation operator. First of
all, applying mutation before eliminating Nc of the individuals poses the risk of losing
some of the mutated offspring but this introduces a greater degree of randomness. It is not
possible to know the number of mutants in the next generation, not even the expected
value, but this approach allows the best individuals to survive in any case. If, for instance,
a child chromosome, which originally had a very good fitness value, turned out to
deteriorate after being mutated, then it is possible that the elimination phase will remove
that mutant. If on the other hand, mutation improves the child chromosome, then it is

highly likely that the mutant will survive through the elimination scheme. Therefore,
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mutating before elimination will, at the risk of losing some of the mutants, incorporate

further randomness into the structure of the GA.

3.7.1. Swap Mutation Operator

The mutation operator consists of swapping any two randomly chosen genes in a
chromosome [12]. A modification is incorporated into the well-known swap mutation
operator to strengthen its influence on the GA. This modification is called “mutation
strength” and is simply the measure of the strength of the mutation operator in terms of the
maximum number of swap moves that are performed. If the strength of the mutation
operator is chosen to be one, then it performs a single swap move if a given probability
P(M) is satisfied. For instance, when the strength of the mutation operator is selected to be
four, then the mutation operator performs at most four consecutive swaps on the individual
chromosome. These swaps are applied on totally random locations, and therefore the four

swap moves are independent.

This modification into the GA mutation operator has many advantages, one of which
is modifying the strength of the impact of mutation on the chromosome depending on the
nature of the problem being considered. Some problems may require high diversity within
the search procedure and mutation strength allows for that. The other advantage is that
mutation strength can be regulated with respect to problem size. For instance, given a
chromosome of 40 genes, mutation of strength “one” may perform very well. However,
when the problem instance is of larger size, say 100 genes in one chromosome, than a
single mutation will not have the same impact it has on the 40-gene chromosome. Hence,

this can be accounted for by increasing the mutation strength accordingly.

In order to study the effects of mutation strength, the example depicted in Figure 3.8
is presented. In this figure, the swap mutation operator is applied over a chromosome
consisting of 11 genes. The first mutation strength is set to one and the second to two. The

relative effects can be seen in this figure.



Individual 1 |1|2|3|*|4|5|6|7|*|8|9|

* Mutation Strength =1 (1)

Individual 1 |1|2|3|*|4|5|6|7|*|8|9|

Individual 1! |1|2|3|*|6|5|4|7|*|8|9|

* Mutation Strength = 2 (D)

Individual 1 |1|2|3|*|4|5|6|7|*|8|9|

)

Individual 12 |1|2|8|*|6|5|4|7|*|3|9|

Figure 3.8. Effect of mutation strength in swap mutation

27
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4. PRELIMINARY EXPERIMENTATION WITH BASIC GENETIC
ALGORITHM

This section provides the details of the experimental procedure followed with the
Basic Genetic Algorithm approach designed. The experimentation performed at this stage
consists of testing the effects of the various parameters used in the GA approach. Therefore
the basic strategies outlined in Chapter 3 are applied over a set of parallel machine
scheduling problems obtained from the literature. The necessary parameter tuning is done
at this stage of the experimentation and based on this extensive search, the best performing
parameter settings are determined. The outcome of this preliminary analysis over the Basic
GA approach is to establish those parameters that are dominant in the performance of the
GA. Thus, those parameters that are shown to be sensitive are set to their best values at this
phase of experimentation. Eventually, based on this analysis, an adaptive mechanism that
will control the most sensitive parameters in the GA approach is developed in the next
chapter. The experimentation and results for the control strategies incorporated are then

presented and analyzed in Chapter 6.

The experimentation is performed by means of a software called “WinMeta v2”,
which is implemented in Visual C++. The Genetic Algorithm strategies are tested via
WinMeta and the results are reported in the following sub-section. The solution strategy to
be applied over each problem can be specified by the user by selecting a combination of
the strategies implemented for Genetic Algorithms via the user friendly GUI (Graphical
User Interface) of WinMeta. WinMeta allows ease of experimentation and flexibility in the
strategies to use as well as ease of analysis of results via detailed output report files.
Various sample screens from the user interface of WinMeta are provided in Appendix A,
where the detailed parameter menus, GUIL, and capabilities of the software are

demonstrated.

Experiments are conducted on a Pentium III — 800 MHz CPU, Host Bus 200 MHz
with 192 MB RAM. The next subsection presents the details of the problem set used for

experimentation, obtained from the literature.
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4.1. Problem Set

The problem set used for experimentation consists of parallel machine scheduling
problems of 40, and 60 jobs, developed and tested by Sivrikaya-Serifoglu, and Ulusoy
[19]. These problem sets are as follows: Instances with n = 40, and n = 60 were randomly

generated, 20 distinct instances being generated for each group.

It has been assumed that machines belong to one of two different types, which have
the same characteristics except that they have different processing times. Type II machines
represent an older technology. The processing time of a job on a Type II machine is 10-20
per cent greater than its processing time on a Type I machine. Similarly, setup times on a
Type Il machine are 20-40 per cent larger than the corresponding setup times on a Type |
machine. Processing times of a job j on the Type I machine, pjl follow the uniform
distribution U [4, 20]. To generate the processing time of job j on the Type II machine,
which is denoted as ij, a multiplier is chosen randomly from [1.10, 1.20] and is applied to

the processing time of job j on the Type I machine.

Setup times on Type I machines, denoted as a', are taken to be uniformly distributed
with U [1, Amax | Where two levels of Ap,x are utilized in this study. Again a multiplier
chosen from [1.20, 1.40] is employed to compute the setup times on the Type Il machine,

denoted as a'. Ready times are assumed to follow the uniform distribution U [0, Rpax],

where Ryax 1s the maximum ready time. Here, Ryax = [(;F + ;)/(N/M-l], where [x] is

the smallest integer greater than or equal to x, and p" and a" are the average processing

time and setup time on machine Type II respectively. The due date of job j is taken to to be
the sum of its ready time, processing time on the Type II machine, maximum time to setup
a Type II machine for the processing of job j, and a slack value. Due dates are computed
according to the formula d; = rjtmax; aijll+pjll+slack. It is assumed that half of the machines

belong to Type I and the other half to Type II.

The best solutions for the above-defined problem set are presented by Bilge et al.
[23]. They apply a deterministic TS algorithm and obtain high quality solutions with

respect to the earlier results from the literature for the same problem set. The next
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subsections provide the details of the experimentation phase conducted for the Genetic

Algorithm approach.
4.2. Performance Measures

For each strategy, the performance evaluation adopted for this study consists of a
comparative relative measure, which takes the best-known value for the problem instance
reported in the literature [23] as a basis. In this performance measure, the relative
deviations of the GA and TS [23] approaches over the best-known value for the problem
instance are traced for each set of problems consisting of 20 instances. These relative
improvements are named as AGA andATS. These terms are defined in the following

equations:

1 & R

AGA, = P Z (Best Value Reported in Literature; — GA ji) (4.1)
j=l

where 1= 1,2,3,4,5 denotes each different seed used for replication in the GA experiments.

In this notation, j denotes the instance number in a given problem set, where j = 1,2,...,20

for the problem set treated in this study .

20
ATS = %z (Best Value Reported in Literature; — TS; ) (4.2)

=

Again, in this notation, the index j denotes the instance number in the problem set
used for experimentation. Since the GA experiments are performed with five replications,
either the average or the minimum of the five seeds is considered for evaluation. These are
computed as shown in the following two equations by using the AGA ; values obtained for

each respective seed:

5
AGA . = %ZAGAI. (4.3)

i=1

AGA ;, =min{AGA} (4.4)
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Finally, the ratio of these relative improvements is computed and used for a
comparison of the relative achievements obtained via each metaheuristic. By looking at
this formulation, it is clear that the aim in this study is to obtain as low a ratio as possible,

where the ratios are defined as follows:

AGAwG op AGAN
ATS ATS

(4.5)

In Appendix B, Table B.1 displays the TS results for the best strategy reported by
[23]. Table B.2 reports the best-known solutions as presented by the same paper. However,
in the experiments performed in this study some of the best-known values to the literature

are further improved and these are also given in Table B.3.
4.3. Experimentation and Numerical Results for the Basic GA

For the preliminary experimentation with the Basic GA approach, only the 40 job-2
machine problem instances are considered. The stopping criterion for the genetic search is
set to be 10000 non-improving generations, and each experiment is replicated with five
different seeds. The parameters of the Basic Genetic Algorithm explained in Chapter 3 are

fine-tuned.

The strategy in the experimentation over the Basic GA is to select the best
performing parameter settings among the tested. By examining the properties of the
strategies tested, it is possible to select the best performing parameter values. Based on
this, the essential parameters are searched and the results are as presented in the following

tables.

First of all, population size is fine-tuned. The number of offspring, namely Nc, is set
to be the half of the population size “N”. Population size is varied from 100 to 200 with a
step size of 25. The search for population size is done by setting the P(CO) to be 100 per
cent and P(M) to be 40 per cent. The results are given in Table 4.1. Although the best
population size occurs when N=150, and Nc=75, a careful examination of the results

shows that increasing the population does not provide further improvement. Considering
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the higher computational requirements of the crowded populations, it is reasonable to set
the population size N to be 100, and Nc to be 50, which seems to be enough to span the
problem solution space. The idea for improving the search space covered, in this thesis, is
not increasing the number of individuals in the population. After a certain number of
individuals are provided in the population, trying to employ more number of individuals is
nothing more than incorporating a brute force search. On the contrary, the effectiveness of

the individuals is tried to be increased in the following chapters.

Table 4.1. Preliminary results for population fine-tuning

AGA g AGA
P(CO)|[P(M)| N Ne | AGA a6 | AGA un ATS ATS
100 | 40 | 100 50 | 2617.220 | 2325.600 14.703 13.065
100 | 40 | 125 63 | 2571.690 | 2291.500 14.448 12.874
100 | 40 | 150 75 | 2414.200 | 2275.200 13.563 12.782
100 | 40 | 175 88 | 2600.030 | 2469.750 14.607 13.875
100 | 40 | 200 | 100 | 2514350 | 2248.500 14.126 12.632

After, setting the population size, the strength of mutation operator is fine-tuned.
Strength of the mutation is directly related to the maximum number of swap operations
allowed per mutation. Mutation strength is tested for three different values, namely one,
two, and three. Table 4.2 shows the results gathered. It is clearly seen that the problem set
on which the strategies are tested performs best when only one swap operation per

mutation is applied.

Table 4.2. Preliminary results for maximum number of swaps used by the mutation

Maximum AGA svg |AGA yy [AGA ¢
No. of Swaps | P(CO) | P(M)| N |Ne¢ | AGA v | AGA yiv |  ATS ATS ATS
1 100 40 |100] 50 | 2617.220 | 2325.600 14.703 13.065 15.615
2 100 40 |100| 50 | 2684.340 | 2432.500 15.081 13.666 16.813
3 100 40 |100] 50 | 2711.540 | 2580.300 15.233 14.496 16.955

Looking at Table 4.3, it is seen that the best performing crossover and mutation
probability combination is P(CO) = 0.80 and P(M) = 0.80. At this stage, it is realized that
the GA strategy adopted favors high mutation rates, which means that the population

diversity needs to be high for good performance. Also, based on the fact that the crossover
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probability is 0.80, it is intuitive to think that the crossover operator’s recombining strength

can be increased.

Table 4.3. Preliminary results for crossover and mutation probabilities

AGA g AGA AGA .«

P(CO) | P(M)| AGA yvg | AGA yiv | AGA yax ATS ATS ATS
0 40 | 2610.430 | 2362.800 2788.900 14.665 13.274 15.668
20 40 | 2311.300 | 2133.050 2466.400 12.985 11.983 13.856
40 40 | 2320.710 | 2153.300 2488.100 13.038 12.097 13.978
60 40 | 2350.970 | 2030.950 2674.800 13.208 11.410 15.027
80 40 | 2252.930 | 2100.350 2371.200 12.657 11.800 13.321
100 | 40 | 2173.820 | 2120.200 2208.650 12.212 11.911 12.408
0 60 | 2434.630 | 2235.300 2758.350 13.678 12.558 15.496
20 60 | 2157.040 | 1928.500 2278.950 12.118 10.834 12.803
40 60 | 2177.260 | 2130.550 2203.000 12.232 11.969 12.376
60 60 | 2156.100 | 2073.600 2220.050 12.113 11.649 12.472
80 60 | 2125.150 | 1961.200 2238.650 11.939 11.018 12.577
100 | 60 | 2167.790 | 2014.350 2416.550 12.179 11.317 13.576
0 80 | 2116.010 | 1773.700 2407.750 11.888 9.965 13.527
20 80 | 2032.730 | 1712.200 2322.500 11.420 9.619 13.048
40 80 | 2104.850 | 2010.350 2271.950 11.825 11.294 12.764
60 80 | 2126.810 | 2002.350 2304.700 11.948 11.249 12.948
80 80 | 2016.620 | 1653.350 2326.050 11.329 9.288 13.068
100 | 80 | 2177.360 | 1813.850 2377.950 12.232 10.190 13.359

For further improvement of the diversity gathered by the crossover operator, it is
time to apply dynamic patching crossover over the selected parameters, namely
P(CO)=0.80 and P(M)=0.80. The results are presented in Table 4.4. Although previous
exploration of the parameters supports that the diversity is essential for the GA to converge
to qualitative results, diversity generating crossover operator, namely diverse patching

crossover, does not further improve the results attained by the former methods. However,
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this is due to nature of the problem set being considered. The problem set involves uniform
parallel machines, meaning that the machines being used for scheduling are not identical
and have different properties such as different processing times and setup times for the
same jobs. Therefore the machines are not identical. However, dynamic patching crossover
by its nature, considers the machines as identical. This mismatch causes the degradation in
the performance. Therefore it is not suitable for this problem set to use dynamic patching

Ccrossover operator.

Table 4.4. Preliminary results for dynamic patching crossover

Crossover AGAAVG AGAMIN AGA yax
Operator P(CO) P(M) AGA AVG AGA MIN AGA MAX ATS ATS ATS
Patching | 80 80 |2016.620|1653.350|2326.050 | 11.329 9.288 13.068
Dynamic

80 80 |[2433.990 |2217.650| 2565.750 | 13.674 12.458 14.414
Patching

The Genetic Algorithm strategies and parameters that are set at the end of this
experimentation stage are summarized below and shown in Figure 4.1. For the initial
population, the population is fed with some list scheduling heuristics (EDD, SPT, SST,
ERT, etc). The population type is transient, as explained in Section 3. The population size
is set to be equal to 100 individuals. From among these individuals, two parents are
selected via ranking roulette wheel and the linearization parameters “a” and “b” adopted
for the entire experimentation phase are set to 1.0. The parents are genetically recombined
by the patching crossover operator with a crossover probability 0.80. The number of
offspring produced at the end of reproduction, Nc, is 50. Each of these offspring is prone to
mutation with a probability of 0.80. At this stage, a transient population consisting of 150
individuals is present. Therefore elimination needs to be employed to reduce the

population size back to 100.

Therefore, the strategy to follow is to develop adaptive mechanisms to control the
population diversity within the search procedure. A different yet complementary strategy
for the diversity control is also included, called training for the purposes of this thesis. The
major concern in this particular adaptive control strategy is to train the premature
individuals in the transient population so that they can better cope with the risk of

elimination via the well-known evolutionary theory of natural selection.
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It should be also noted that the transient population approach devised in this study is
in analogy with the law of survival of the fittest, where the best N individuals are allowed
to survive from among a transient population consisting of the old population and the new
offspring ranked with respect to their fitness values. Therefore, the Basic GA approach and
the control strategies presented in the next section increase the analogy between the natural

evolutionary theory and the GA.

Chapter 5 follows next with a detailed description of the adaptive control strategies

developed for the Basic GA approach presented in Chapter 3.
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5. ADAPTIVE CONTROL OVER BASIC GENETIC ALGORITHM

The Genetic Algorithms are prone to the risk of premature convergence, which
means that the population converges to a set of good performing and highly similar
members or to an individual without having much chance of generating representatives of
diverse hyperplanes of the solution space. Also, it is known that this weakness of GAs can
be attributed to the high sensitivity of the GA parameters, since most parameters have a
high influence on the performance of the algorithm and this strong parameter dependence
affects the robustness of the approach. Therefore, the GA can be termed as unstable from
the control theory point of view. When a system is defined as unstable, the natural attitude
is to try to control it. Classical control theory proposes closed-loop systems for robust
control of a system. A closed-loop system is one that considers the output of the previous

state as a feedback input for the successive state.

Based on this brief introduction to closed-loop control systems, such a system is
proposed to increase the robustness of the GA approach. Hence, a closed-loop control
system tailored for the system under study can maintain the parameters under control
ranges that are suitable for the problem considered, such that the solutions obtained tend to

optimality. In order to depict the above defined system, Figure 5.1 is provided.

reference error CONTROLLER output
—_—

v

Sensor

A

Figure 5.1. Closed-loop control system
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Based on this explanation, a control mechanism consisting of complementary
subcomponents is devised in this study. The experiments performed in Section 4 indicate
that the problem under study favors rather high mutation rates and thus favors high
diversity within the GA search. Therefore, the population diversity is the first performance

indicator to be controlled for higher performance.

On top of this diversity control, a training mechanism is developed which is designed
to operate on the weak offspring in the population. This control approach aims to
overcome the risk of premature convergence due to the dominance of some fit individuals
prevailing at the higher regions of the sorted population. The attitude adopted is to select
the least fit individuals from the population and run a series of training operations over
them. This i1s required to increase their level of maturity before they can actually
participate in reproduction and especially necessary to diminish their risk of mortality via
natural selection, which is incorporated as the transient generation scheme in this study.

This approach is called “training” for the purposes of this study.

These control approaches are not independent however, and the output of one of the
mechanisms will most of the time behave as the trigger of the other complementing
mechanism and vice versa. Before further contemplating on this claim, the details of the
control mechanisms developed and their operating principles need to be provided. The
following subsections describe the approaches developed for controlling the Genetic

Algorithm developed in this thesis.

5.1. Adaptive Control for Population Diversity

Based on the fact that the GA performs better with high mutation rates, and therefore
with high population diversity, an adaptive mechanism to control the population diversity
whenever it deviates from a threshold value is developed. The operating principle of the
control mechanism is simple in that whenever the population diversity falls below a given
percentage, the control mechanism is triggered and a set of diversifying operations are
performed on the population. At the end of these moves the population diversity increases

and the Basic GA is resumed until the diversity falls below the threshold level. For the
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purposes of designing such a control mechanism a trigger, the measure of population

diversity, needs to be defined and this is done in the next sub-section.

5.1.1. Evaluation of Population Diversity

As previously stated, the linearization phase allows the individuals equal priorities
whenever they have equal total tardiness values. WinMeta v2 exploits this property in such
a way that the diversity measure to be used by the diversity control trigger is evaluated not
only in linear time but also very efficiently. The maximum possible value of the fitness
assigned by the linearization phase occurs when all the individuals in the population have

distinct total tardiness values. Hence, the maximum value 1s formulized as

fitness upper bound =a+bx (N —-1) (5.1)

where N is the population size. In this formula “a” and “b” are the linearization parameters
used in ranking roulette wheel as explained in Section 3.4. Using this definition of the
maximum fitness in the population, population diversity is calculated in the following

manner:

max imum fitness of current population

diversity = (5.2)

fitness upper bound

Based on this formulation, Table 5.1 depicts the working principle of the
linearization phase for the calculation of the population diversity. In these examples, a
population consisting of eight individuals is evaluated, and the total tardiness values are
converted to fitness values by ranking linearization. For this, the linearization parameters
“a” and “b” are both set to one. In both examples, since the population size is eight, the
fitness upper bound also turns out to be eight. In these examples it is seen that if any two
population members have identical total tardiness values, then their fitness values are also
identical, and therefore, the fitness upper bound cannot be reached. As such, the population
diversity falls below 100 per cent in proportion with the number of identical individuals in

the population.
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Table 5.1. Linearization phase for calculation of the population diversity

Sorted Individual Number 1 2 3 4 5 6 7 8
- Sorted Tardiness Values | 14079 | 15102 | 15102 | 15185 | 16404 | 17001 | 41008 | 43304
=
e Fitness Values, f 7 6 6 5 4 3 2 1
E Upper bound of fitness 8
=
Diversity evaluation % = 87.5%
Sorted Individual Number 1 2 3 4 5 6 7 8
~ Sorted Tardiness Values 803 1148 | 1148 | 1148 | 2205 | 2205 | 3181 | 4005
=
e Fitness Values, f 5 4 4 4 3 3 2 1
E Upper bound of fitness 8
=
Diversity evaluation % = 62.5%

5.1.2. Operation of Diversity Control

The diversity generating operations are well defined in that they consist of a series of
mutations over those population members that are the same in genotype. Before anything,
the population is sorted with respect to total tardiness. If the population consists of clusters
of individuals whose fitness values are the same, then the procedure is to preserve the first
individual in the cluster as it is, and to mutate each of the other individuals belonging to the
same cluster with the same mutation strength utilized throughout the GA. With such an
approach, the clusters consisting of identical individuals will be genetically disrupted, and

more diverse individuals will appear in the population.

The introduction of diversity, however, is done with some precaution by leaving
some portion of the transient population untouched. This fittest portion is defined as non-
mutants. This concept is introduced for the sake of preserving some very fit individuals
that may be changed by mutation in the transmission from one generation to the next.
Setting a value greater than zero for the number of non-mutants ensures that the fittest “k”
individuals in the population remain untouched. By this means, it is possible to provide
sufficient emphasis on the current best genotype. Diversity control is schematically

described in Figure 5.2.
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The impact of the diversity control mechanism can be best observed through some

41

population distribution charts obtained from WinMeta at some successive generations. For

this purpose, the first instance in the 40 job-2 machine problem set is considered, and the

diversity threshold is set to be 45 in this case. Figure 5.3 demonstrates the instant when

diversity falls down to 45 per cent, namely, just when the diversity threshold is reached

and the control mechanism is triggered.
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Figure 5.3. GA population at the diversity threshold

It is seen in the figure that there is a prevailing peak in the population and premature
convergence has started. At this stage, the diversity threshold is reached and the adaptive
control mechanism to maintain the population diversity above the threshold value is
triggered. A series of mutations are applied and the outcome of this diversification phase is

the population distribution obtained in Figure 5.4.

Hence, by the operation of diversity control, the peak consisting of converged
individuals is suppressed and the population distribution is smoothed, as seen in Figure 5.4.
This is especially important to prevent premature convergence of the population to some
local optimum. The function of the diversity control can also be interpreted as decreasing
the peakedness of the population whenever the fittest individuals start dominating the

population beyond an acceptable threshold.
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Figure 5.4. GA population after diversity control is triggered- diversity at 91 per cent

It is also worth noting the difference in the scales of the two diversity graphs
presented above. After the diversification control is triggered the “tardiness” scale extends
from 180000 to 700000, and the “number of individuals” scale decreases from 66 to 22. It
is clearly seen that the peakedness value of the population distribution is decreased after

the application of the diversification control.

5.2. Adaptive Training Procedure for Premature Chromosomes

In order to further exploit the recombining strength of the crossover operator, an
adaptation from real life occurrences is also introduced at this stage. This will be called
“training” for the purposes of this thesis. This naming is based on the argument that a
newborn child is not capable of surviving in the environment without first going through a
series of training sessions. At this stage, it is also apparent that leaving the premature child
chromosome to struggle with its mature predecessors is unfair when real life practice is

considered.
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This concept can be extended to encompass the entire set of unfit individuals in the
population instead of just the offspring. In this case, the set of unfit individuals needs to be
specified as a proportion to the entire population. Therefore, it is suitable to adopt a
training mechanism that will prepare the least fit individuals in the population to cope with
the environment. This training mechanism consists of a steepest descent process applied

over the least trained portion of the population.

The trigger of this control is a performance measure of the system that stimulates
steepest descent when the search stagnates for a proportion of the entire search duration.
This proportion is set to be 1.0 per cent, i.e. 100 non-improving generations. Two other
parameters are also needed to completely define the behavior of the training phase. These
are the duration of the training session applied over each of the individuals and the number
of individuals to be educated. The former is defined in number of iterations for which
steepest descent will take over and the latter is defined as a percentage, TP, of the total

population.

The real strength of the control system devised will be reflected only when both the
adaptive diversity control and the adaptive training strategies are superimposed on the
system. It is at that stage that the control system will attain the closed-loop form depicted

in Figure 4.2.

The training phase designed for adaptive control aims to improve the quality of the
worst individuals in the population, so that the population members are forced to cycle
within the sorted transient population if they survive through the elimination phase. This

situation is shown in Figure 5.5.

This cycle is a natural consequence of the training phase, since those population
members that are trained move to the higher fitness regions in the sorted population,
whereas the individuals that originally prevailed in the high fitness regions move to the
lower fitness regions since superior individuals are inserted. In order to depict the working
mechanism of the training phase, Figure 5.5 is provided, where the ranked population

consisting of 100 individuals has 20 of the worst individuals improved by a training phase.
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Upon training, the worst individuals improve in fitness and there is a reshuffling of
the population. In this example, 20 per cent of the population is prone to training. This

percentage can be adjusted depending on the requirements of the problem.
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To study the marginal effect of training over the population, once again, the first
instance in the 40 job-2 machine problem set is utilized. The following figures from the
GUI of WinMeta depict the operation of the training phase, where Figure 5.6 shows the

distribution of the population just before the training phase is triggered.
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Based on these figures, it is evident that the function of the training phase is to
improve the fitness of the worst population members so that the population distribution
curve is smoothed out towards the right, hence towards the region of high fitness
individuals. In other words, the function of training can be defined as decreasing the

skewness in the population distribution.

It is important to note that after the training phase the “tardiness” scale decreased
from 500000 to 180000, and the “number of individuals” scale increased from 25 to 26.
The training phase is adjusted in such a manner that it only educates the unfit population,
and therefore provides fitter individuals, which will be further improved by the crossover
operator of the GA. The main approach is not the application of a steepest descent
algorithm to improve the current fittest individual. Nevertheless the application of a
steepest descent phase at the very end of the GA, just before presenting the fittest
individual ever reached throughout the search, will still have the chance of improving the
best found tardiness value. Although the literature contains various examples of steepest
descent applications falling in these categories, the aim of this study is to present a generic
adaptive approach to support the performance of the GA, not searching for the best values

aggressively.
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6. EXPERIMENTATION FOR ADAPTIVE CONTROL

In this section, the experimentation and numerical results for the adaptive control
mechanism explained in Section 5 are provided. The control approaches are tailored
according to the problem under consideration and fine-tuned with respect to the working
principles of one another over the “40 job-2 machine” problem set. After establishing a
steady control system, the resulting parameters are applied over the remaining problem
sets, which consist of “40 job-4 machine”, “60 job-2 machine” and “60 job-4 machine”

problems.

Based on the definitions of the control strategies, some parameter values need to be
optimized with respect to the problem. First of all, the population diversity control
mechanism is handled. For this control approach, the number of non-mutants in the
population is set to a fixed value (10 per cent of the entire population) and the diversity
threshold, which is the measure that triggers the control mechanism, is adjusted. The
number of non-mutants will be fine-tuned in the second stage of experimentation where the

training control mechanism is also introduced.

For the diversity threshold, the results of the experiments regarding this parameter
are presented in Table 6.1, where crossover probability is also further fine-tuned. Based on
these results, the crossover probability is set to 80 per cent and the diversity threshold is set
to be 60 per cent. These will be the default values of these parameters for the remaining

experiments conducted in this study.

Table 6.1. Preliminary experiments for diversity control

ey AGA v | AGA 1 | AGA 4
P(CO)| P(M) [Mutants|Threshold| AGA avg| AGA yin| AGA yax|  ATS ATS ATS
80 80 10 60 1565.320 | 1408.350 | 1697.750 8.794 7912 9.538
80 80 10 70 1709.120 | 1511.850 | 2002.200 9.602 8.494 11.248
80 80 10 80 1673.820 | 1606.250 | 1799.850 9.403 9.024 10.112
85 80 10 60 1671.910 | 1455.200 | 1780.700 9.393 8.175 10.004
75 80 10 60 1670.260 | 1519.700 | 1774.400 9.383 8.538 9.969
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Comparing these results with the case where no diversity control is used, the former
value of AGA .ys /ATS decreases from 11.329 to 8.794. Therefore the diversity control

enhances the quality of the solutions on the whole.

Although the improvement provided by the diversity control seems to be low at first
sight (22.4 per cent), it is worth noting that the true power of this control mechanism will
be revealed when its complementing subcomponent is also introduced within the system as

explained in Section 5.2.

The next set of experiments investigates the effect of training over the performance
of the GA, where having the two control strategies superimposed on the pure GA, the well-
known closed-loop control system is achieved. For this purpose, the number of trainees
and the training duration are the two control parameters that need to be fine-tuned. These
not only need to be fine-tuned for the training control, but also optimized with respect to
time requirements of the training algorithm. As for the diversity control mechanism, the
number of non-mutants is the parameter that needs to be fine-tuned at this stage. Therefore,
before attempting to optimize the parameters of the training control mechanism, the
number of non-mutants is considered. For this parameter, various values are tried, while
keeping the training control parameters set to some default values (both parameters being
set to 10 for this set of experiments) and the best performing settings are presented in Table
6.2. It is seen from these results that the best value for the number of non-mutants is 10,

since it provides the lowest value for AGA ,;/ATS.

Table 6.2. Fine-tuning of non-mutants in diversity control

Training Diversity
Number| AGA AVG AGA MIN AGA MAX

of [Trainin Non-

trainees duratiorg1|Threshold Mutants|P(CO)[P(M) AGA ol AGA \in|AGA 1y  ATS ATS ATS

10 10 60 5 80 |80 | 305.360 | 134.200 | 398.900 1.716 0.754 2.241
10 10 60 8 80 | 80| 297.120 | 146.400 | 380.350 1.669 0.822 2.137
10 10 60 10 | 80 | 80| 293.810 | 212.550 | 358.100 1.651 1.194 2.012
10 10 60 12 | 80 | 80| 326.720 | 192.550 | 403.350 1.836 1.082 2.266

The next step in the fine-tuning experiments is to handle the number of trainees and

the training duration. For this set of experiments, the two parameters are both considered
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simultaneously by keeping the value of one of them constant and varying the other. Once
the best value for one of the parameters is achieved, it is set as the default value of the
parameter and the second parameter is then varied. The following settings presented in

Table 6.3 and Table 6.4 are utilized for this purpose.

In Table 6.3, the training duration is set to a fixed value of 10 and the number of
trainees is varied in the range [5, 20]. It is a clear observation that increasing the number of
trainees has a positive effect on the performance of the GA. By looking at the last row in
Table 6.3, it is seen that the best performance is achieved by setting the number of trainees
to 20. Although the intuition is that further increasing the number of trainees will still
increase the solution quality, there is a prohibitive aspect of the attitude in that increasing
the number of trainees increases the solution quality at the expense of increasing the
computational requirements as well. Hence, this tradeoff can be overcome by accepting a

threshold value and this value is set to be 20 in this study.

Table 6.3. Fine-tuning of number of trainees

Training Diversity
Number] AGA . | AGA 1 |AGA |4

of [Trainin; Non-

trainees duratiorﬁThreshold Mutants|P(CO)|P(M) AGA | AGA \|AGA 1y ATS ATS ATS

5 10 60 10 | 80 | 80| 455.690 | 352.050 | 541.800 | 2.560 1.978 3.044
8 10 60 10 | 80 | 80| 315.230 | 183.550 | 439.050 1.771 1.031 2.467
10 10 60 10 | 80 | 80| 293.810 | 212.550 | 358.100 1.651 1.194 2.012
12 10 60 10 | 80 | 80| 316.630 | 187.400 | 376.400 1.779 1.053 2.115
15 10 60 10 | 80 | 80| 288.390 | 168.050 | 464.100 1.620 0.944 2.607
20 10 60 10 | 80 | 80| 206.380 | 107.000 | 335.800 1.159 0.601 1.887

Having established the default value for one of the training control mechanism
parameters, the next parameter can be adjusted. The parameter to be adjusted is the training
duration, which refers to the number of iterations for which the premature individual will
be trained. In this tuning process, the training duration is varied within the range [2, 15]
and the performance measure is evaluated for each parameter setting presented in Table
6.4. Looking at the first row in Table 6.4, where the training duration is set to two

iterations, the value for AGA ,,;/ATS is found to be 6.899. This value decreases to 0.809

in the last row of this table, where the training duration applied over the premature

chromosomes is set to 15.
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Training Diversity

Number| AGA AVG AGA MIN AGA MAX

tra?lfees gz:;:::ﬂThreshold Mljl(t);:ts pco)PM) AGA o] AGA uin|AGA i  ATS ATS ATS
20 2 60 10 80 |80 (1228.090|{1007.600|{1392.950| 6.899 5.661 7.826
20 4 60 10 80 [ 80| 967.650 | 868.250 |1124.350| 5.436 4.878 6.317
20 6 60 10 80 |80 | 700.140 | 586.500 | 847.950 3.933 3.295 4.764
20 8 60 10 80 | 80 | 409.200 | 360.750 | 499.000 2.299 2.027 2.803
20 10 60 10 80 |80 | 206.380 | 107.000 | 335.800 1.159 0.601 1.887
20 12 60 10 | 80 [ 80| 166.570 | 90.100 | 219.650 0.936 0.506 1.234
20 15 60 10 | 80 |80 | 144.050 | 67.750 | 218.700 0.809 0.381 1.229

Since the results presented in Table 6.4 show that increasing the training duration to

15 iterations increases the performance with respect to the case when 12 iterations are

used, and this leads to the intuition that further increasing the value of this parameter will

result in higher performances. However, the computational time requirements are more

than the marginal utility introduced and to maintain the feasibility of computational time

requirements, the value for this parameter is set to 15 for the remainder of this study.

The fine-tuning process for the control strategies is completed. A set of default

values for all the parameters is obtained. At this stage, it is necessary to provide a

comparative analysis of the strategies introduced so far and the improvements achieved via

each of the control mechanisms. The results of this analysis are presented in the following

table where a comparison of the three cases of no control at all, the diversity control and

both the diversity and training controls is made.

Table 6.5. Comparison of control strategies

Training Diversity
Number —AGA AVG
of | Training Non- ATS
trainees | duration | Threshold | Mutants P(CO) P(M)
- - - - 80 80 11.329
- - 60 10 80 80 8.794
Percent improvement introduced by diversity control 22.38
20 15 60 10 80 80 0.809
Percent improvement introduced by diversity control and
training control 92.86
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At this stage the preliminary experimentation for the control approaches is completed
and the resulting parameter settings for the GA approach are set as the default values. To
summarize, the population size used for the GA approach is 100 individuals, and the
number of offspring generated at each generation is set to 50. The crossover operator is
employed with 80 per cent probability. The PMTT problem addressed in this study favors
rather high diversity within the search phase and hence high mutation rates. Therefore, the
mutation probability is set to 80 per cent for best performance. The complementary control
mechanisms imposed over the pure Genetic Algorithm have two distinct parameters each.
For the diversity control in the population, the control mechanism is triggered whenever
diversity falls below a threshold of 60 per cent. However, in order to preserve the precious
genetic information prevailing in the fitter portion of the transient population, the concept
of non-mutants is introduced and this parameter works best when set to a value of 10.
Based on this explanation, the fittest 10 individuals are protected from mutation in the
diversification phase. On top of this, the training control mechanism is also superimposed.
The training mechanism is triggered whenever the search stagnates for 100 generations.
The worst 20 per cent of the current population is educated by training the individuals via

15 steepest descent iterations.

In the next part of the experimentation performed, these parameter settings are
applied over the “40 job-4 machine”, “60 job-2 machine” and “60 job-4 machine” problem
sets respectively. The next subsection provides the details of the experimental procedure

followed for this phase of experimentation.

6.1. GA Performance for the Remaining Problem Sets

Since the aim of this study is to develop a robust adaptive control mechanism in the
form of a closed loop system to control the Genetic Algorithm performance, the effect of
the control mechanisms developed so far are studied over problem sets consisting of
different instance sizes. In the PMTT problem, which constitutes the test-bed for the
adaptive GA, the instances vary according to the number of jobs and the number of
machines. A natural consequence is that the solution space increases as the problem
instance size increases. Hence, the aim of this part of experimentation is to determine the

robustness of the control approaches devised when different problem sizes are treated.
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In this phase of experimentation, the strategy is to first treat the problem sets of
different instance sizes with the Basic GA in its pure form as explained in Chapter 3. Upon
the Basic GA, the parameter settings emerging from the adaptive control experiments
performed for the “40 job-2 machine” problem set are applied and the percent
improvement is traced. By this means the robustness of the control mechanism developed
is established. The results of this phase of experimentation are presented in Table 6.6,
where both the Basic GA results and the adaptive GA results are shown. Also, the per cent
improvements brought over the Basic GA are produced and demonstrated. For ease of
illustration, the performance attained with the “40 job-2 machine” problem set is also

included in the first two rows of Table 6.6.

Table 6.6. Effect of adaptive GA

Training Diversity
Problem Number of | Traini Non- AGAA
umber of | Training on
Set P(CO) [P(M) | trainees |duration | Threshold | Mutants | AGA ave ATS
40 Job
2 Machine | 80 80 - - - - 2016.62 11.329
40 Job
2 Machine | 80 80 20 15 60 10 144.05 0.809
Per cent improvement 92.86
40 Job
4 Machine | 80 80 - - - - 333.120 7.065
40 Job
4 Machine | 80 80 20 15 60 10 52.840 1.121
Per cent improvement 84.13
60 Job
2 Machine 80 80 - - - - 4647.7 6.534
60 Job
2 Machine 80 80 20 15 60 10 420.57 0.591
Per cent improvement 90.96
60 Job
4 Machine 80 80 - - - - 1134.08 6.099
60 Job
4 Machine 80 80 20 15 60 10 1006.73 5414
Per cent improvement 11.23

Based on the results thus presented, the control strategies developed introduce
improvement over the performance of the Basic GA to a great extent. The AGA ,,;/ATS
ratios below 1.0 mean that the performance of TS in reaching the best solutions reported so

far is exceeded by the GA approach in this study. For the 40 job-2 machine, and 60 job-2

machine problem sets, the values of this ratio turn out to be 0.809 and 0.591, respectively.
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Furthermore some of the best-found solutions reported by the literature are improved. The

revised best values are presented in Appendix B.3.

The highest improvement rate is attained in the 40 job-2 machine problems, which is
expected since the entire fine-tuning experimentation is done over the 40 job-2 machine
problem set. Using the same parameter settings over the 60 job-2 machine problem set as
well results in a slightly lower performance upgrade when compared with the 40 job-2
machine case. This result indicates that by only changing the number of jobs in the parallel
machine-scheduling problem, the quality of the results obtained via the adaptive GA does
not deteriorate. In other words, varying one of the problem parameters does not necessitate
adjustment of the GA parameters, since the adaptive GA reduces the parameter sensitivity
of GA. If on the other hand, the number of jobs is kept constant and the number of
machines is varied, as in the 40 job 4-machine problem set, the improvement achieved is
close to the performance in the 40 job-2 machine. Therefore the argument is that varying
just one of the defining parameters of the problem instance does not affect the performance

of the adaptive GA.

If however, both of the defining parameters, i.e. number of jobs and number of
machines, are changed, then the performance improvement introduced by the adaptive GA
decreases. This can be seen by looking at the per cent improvement of 11.23 introduced
over the 60 job-4 machine problem set, which is not as good as the other problem sets.
Nevertheless, adaptive GA can still improve the preliminary results obtained by the Basic
GA in 60 job-4 machine problem instances as well. Hence, a concluding remark in this
respect is that in the parallel machine total tardiness problem, when the parameters having
correlation are both varied simultaneously, the robustness of the adaptive GA is not

sufficient to completely remove the parameter dependence of the Basic GA.
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7. CONCLUSIONS

This study aims to develop a robust adaptive control mechanism over Genetic
Algorithms. For this purpose, a Basic GA is developed by tackling the key elements of
Genetic Algorithms. Taking into consideration the fundamentals of control theory, a
closed-loop control system is devised for adaptive control of this Basic GA. These
strategies are applied over the Parallel Machine Total Tardiness (PMTT) problem to

evaluate the robustness of the adaptive control mechanism thus generated.

The PMTT scheduling problem consists of a set of jobs to be scheduled on a number
of parallel machines, where the aim is to minimize the total tardiness of all the jobs. This
study addresses the most generic form of the problem in that distinct ready times, due dates
and processing times are considered for each job. In addition to these features, sequence
dependent setup times and non-identical, i.e. uniform machines are also incorporated to

simulate more closely the actual practice in the industry.

As the first step, the fundamentals of Genetic Algorithms are studied and a basic GA
approach is developed to meet the requirements of PMTT. The key elements tackled to
address the PMTT problem result in a series of parameters that need to be regulated for
efficiency and performance. In order to achieve a closed-loop form for the control
mechanism over the Basic GA, two complementary control strategies that operate upon
different triggers are implemented. These control strategies operate sequentially in that
whenever one of them is triggered, the outcome becomes the trigger for the complementary
strategy. This is clearly observed by the GUI of WinMeta and the population distributions
resulting after each control mechanism is triggered. Hence, whenever population diversity
decreases, a series of diversifying moves, applied in the form of mutation, smooth out the
population distribution, and the regular GA progress is resumed until the recombining
strength of crossover proves to be insufficient to generate new and fitter individuals and
the search stagnates for a given period. At this stage, the training mechanism is triggered to
improve the worst population members to force the GA out of the stagnation period.
Having established the closed-loop control mechanism over the Basic GA, a set of

problems from the literature is employed for evaluation of performance and robustness.
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The problem set used for experimentation is obtained from the literature [19] and
considers the deterministic dynamic PMTT problem with sequence dependent setup times.
These problem sets are solved via WinMeta [23], which is a software developed for this
thesis in order to work with scheduling problems with tardiness based objectives. WinMeta
can readily incorporate new solution strategies and enhancements to the strategies
developed in this study. The GUI of WinMeta not only allows ease of experimentation, but
also introduces a great deal of flexibility by allowing the user to set up any combination of
parameters and perform extensive experiments via a special batching system. The
graphical display of WinMeta also provides the possibility to observe the population
distribution throughout the GA progress, where some population distribution

characteristics are dynamically evaluated and displayed.

The problem set used for performance evaluation is first solved by the Basic GA
strategy developed and a set of preliminary and advanced experimentation phases are
performed. In the preliminary experimentation phase, the basis for the adaptive control
mechanism is established. Therefore, upon this Basic GA, an adaptive control mechanism
to decrease the parameter dependence of the basic GA is implemented. Hence, the aim and
accomplishment of this study is to adaptively control the GA to better exploit its strengths
by diminishing its high parameter dependence. In order to accomplish this, the most
sensitive parameters are determined and studied via a preliminary analysis consisting of a
set of initial experiments. In this phase of experiments, some parameters are tuned for high
performance so that the best performing GA parameter settings become the basis for the
control strategies to be developed. Among various system evaluation possibilities,
population diversity is selected as the system output upon which the adaptive GA approach
is based. The results of the preliminary experimentation phase reveal that high diversity in

the population increases the performance of the basic GA.

Performance evaluation is done based on the best-known results to the problem set as
published by Bilge ef al. [23], who not only list their best-known values but also present
the best results obtained via their totally deterministic TS algorithm. Hence, the success of
GA is determined by evaluating the total deviation from the best-known values in the
literature. The deterministic TS approach and the adaptive GA approach are also compared

in their performances by determining the ratio of deviations of these strategies from the
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best known values [23]. This ratio reflects the success of the probabilistic GA in achieving

high quality solutions with respect to the TS approach.

The GA strategy has a stochastic nature that imitates the natural evolutionary
process, and because of this, replication is necessary in the experiments. Therefore, the GA
experimentation is conducted with five different seeds. The GA results obtained for this set
of problems show that, for the “40 job-2 machine” PMTT problem, when the performance
of five seeds 1s averaged, GA succeeds to 0.809. If the best performing seed is considered,
then this ratio attains the value of 0.381. For the “40 job-4 machine” problem set, the GA
approaches the performance of the TS algorithm [23], and yield a deviation of 1.120 from
the best-known values. Considering the best performing seed, this ratio becomes 0.846. As
for the “60 job-2 machine” problem set, GA has a success rate of 0.591 in reaching the
best-known values to the literature as compared to the totally deterministic TS approach.
The best performing seed has a success rate of 0.460. In “60 job-4 machine” problem set
GA succeeds to 1.437 and 1.234 when the average and the minimum of the replications are
considered respectively. It is worth noting that the values less than 1.0 are the indication of

higher performance when compared to TS best strategy proposed in Bilge et al [23].

The time performance of the adaptive GA reveals the fact that for the 40 job-2
machine problem set, the time requirement to find the best solution in the course of GA 1is
in the range of [0, 37] seconds. This range becomes [0, 68] if the entire search process is
considered. These time ranges turn out to be [0, 48] and [0, 75] for the 40 job-4 machine
problem set. When the 60 job problem sets are considered, the time ranges become [0, 116]
and [0, 174] for the 2-machine case whereas for the 4-machine sets these ranges are [0,

136] and [0, 183].

To conclude, a general analysis of GA is necessary within its own context. GA has a
high number of parameters that can be adjusted for higher performance. However a trade
off prevails due to the difficulty of fine-tuning the parameters. This difficulty is magnified
by the concern of problem size as well. Also, since most of the GA parameters are not
independent, like N and Nc, these parameters need to be fine-tuned in accord with problem
size and each other. Setting all the GA parameters (for instance N, Nc, P(CO), etc.) to

some predefined default values regardless of the problem nature and size is clearly a bad
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strategy that cannot guarantee robustness in the GA. Therefore the major enhancement
brought to the GA concept in this thesis is the adaptive control mechanism tailored to the
Basic GA design. Furthermore, the Basic GA design incorporates a major enhancement in
the form of the transient generation approach, which at each generation, forms a transient
population consisting of the original N individuals and the Nc new offspring. This
approach, together with the elimination scheme devised, is an important performer in
increasing the average population fitness form generation to generation. Moreover, the
transient generation approach is in strong analogy with the survival of the fittest law in
natural evolutionary theory. In addition to the transient generation approach, the well-
known uniform-order based crossover mechanism, which is called patching crossover
operator for the purposes of this study, is enhanced by implementing a dynamic
recombination structure. This structure, called dynamic patching crossover, reshuffles the
gene string encoding different machine schedules and then maps the template binary string
to recombine the genetic information from the two parents. This approach is innovative in
that inter-machine job movements are allowed for generating different machine schedules.
Although the dynamic patching crossover does not show the expected performance, this is
attributed to the fact that the problem set under study consists of parallel machine
scheduling problems with uniform machines, which are not identical and technology
differences in the machines disrupt the working principle of the dynamic patching
crossover operator. Finally, in this study, the recombining capabilities of the crossover
operator are also fortified by the aid of the control mechanisms built on population

diversity and convergence behavior.

It is important to state that most studies from the literature propose GAs that are
subjected to climbing heuristics like steepest descent at the end of the GA, that is after the
GA has converged to various local optima. Although the same attitude can be incorporated
in the Basic GA developed in this study, this is not done since it is out of the scope of this
thesis. As a future study, this strategy can be implemented and tested over the Basic GA
and the adaptive GA approaches to evaluate its impact. The dynamic patching crossover
operator is also worth attention in regard of future studies in that its true strength is not
reflected in the problem set used for experimentation. Hence, the diversifying effect of this
crossover operator can be enhanced in studies over different GAs addressing different

problems.
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APPENDIX A: WINMETA SAMPLE SCREENS

This appendix provides sample screens for WinMeta, which is a software developed
for experimentation conducted in this study. WinMeta is a software that addresses
scheduling problems with tardiness based objectives. It incorporates flexible modular
components that enable continuous development of the software via implementing various
metaheuristic solution strategies and heuristics. The Graphical User Interface of WinMeta

1s demonstrated with the following figures.

Figure A.1. WinMeta v2 batch processing module
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Figure A.2. Job settings
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Figure A.3. Setup matrix for Type I machines
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Figure A.4. Genetic algorithm population display
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Figure A.5. Population distribution graph
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Figure A.6. Control parameters supported by WinMeta v2
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Figure A.7. Regulation of parameter settings in WinMeta v2

=¥ Winheta v

File  Options  Help
(NVE | & open
stort | ctop | Bateh start

Esave

Weave Az, |DCalwlatur @) sbout

Freblan | Rasults | Records | Batch | TABU sEARCH GENETIC SEARCH |

firtar ke Sbare | | Bquil
e Moy Mrame 8 mac

Hirhinea

L | Pt n=Imp rawi ng
INITTAIZE
- LINEARTEATION
(atari[1 |sten[1 |

[ Ranking | PRpEERRET
S:alnu eon mu 8FT srr
la o o |

AT WEPT REM EZH4

stap Crit | 10000

|v Ranhing| € |2

r:lmn.n| L |
- PARENT SELEETIAN
Salictiar Met ot

urrhirtierd IFTs
B i iy
Dlserimrerar 28]
= GENERATIGN & ELMINATION
riTysa| 7 Tranalan] Sava Beai 8 [2 |
:um.rml = buakc | il Trani s [an |

CROSEOVER
Mt | = Ratah Fralah ity 188 |
Conditional Crossauer

Cronsawise Pkt arn D% S urt |0 M

+ HUTATEI N
+ CONTRILLIR

= R ulele Wheel

+ Harres |+

o

Humbar af

FEl preferencas

Distibution | Centaol Parsmetars  Display |
Guneration § = 356 at
Current Dest Tardiness = 19032
Time used = 10 seconds
Time ugsed for the bhest solution = 10 seconds
Stopping Criteriom = 356
Eopulation Age = 3, 560000 ~
o
2
=
Tiire

¥ ]'md. ]inl. lnu [Flhm Sehadule ~
1 19032 41022 4 an 1930 11329625 44T 20 L4329 2400 15 23026 0022 2012 € 10309232797 1 0 € 5 733 20 34
2 19032 41022 5 an 1030 11329625 44720 142329 2440 315 23026 0022 2012 £ 1030232797 1 D & § T33 20 34
3 19218 RILEF] a k) 19FHLIATIARIS 4170119292300 FUF ZTLZ6 W A2 2L 12 RI0FDZAITIT 1 0 & 5 T I 2004
o aimzz ¥ ar 1936 11323825 41T 20041329 2480 F AT 2 FL26 08 22 ¥ 20 12 WIDZITAT 106 5 T IR0 34
L] 19056 w05 1 EL) 1936 1182 9825 4 AT 20 A4 AN 2924 6 105 2126 182202002 W ZIITAF 1L 0402 T F 20 04
L] 19956 M550 1 L) 1936 11323825 41720 14132924 & 315 2326 1822 ¥ 21 12 S 10 M 232737 1 Q4033 5 720 34
7 19956 W55 1 26 1030 11329625 4472014292924 & 315 231 26 1622V 20 12 S0 00232737 1 04033 § 72034
L] 19758 AWEH 1 kL) 193611323825 4172014192923 & 315 210 IB22 "2 02 FLO WIS 277 1 OWIF 5 720 34
L] 19056 I 2 kL) 1FHAITZINIT AT IO ATI9TH 6 TS 2 IO AR IT VL2 WO T0IFITIF L O AT S F 20 a4
1 19056 w05 1 EL) 16 A1 A2 825 A AT 0 A4 AN 2920 6 115 2126 12202102 10 M0 2R ITAF 1 00 A3 T F 20 04
1 19956 L kL] 1 an 1936 11923825 4172014192924 6 315 23126 1822921 12 S 10 M 2A2TAF 1 Q40 A% 5 720 34
12 19 M55 3 36 1936 113236 25 44T 20 14292924 € 315 231 26 1 » SR 1 0T 5 T 204
13 19758 WEH 3 kL) 1936 11323825 4172014132923 & 315 23120 WWIIITIF 1 UWIAT G 72634
4 1ee AT a kL) 1IHLIAIINIS 4172014192923 & T15 27130 1 TWIWIATITIF L OWAT S 7204
15 19056 L kL] 5 an 16 A1IZARZT AATZ0AA 132924 6 TS 2 I 6 AR ZZ V2002 R A0 02 2T AT 1 00 AT S F 20 A4
18 19956 L kL] k] an 1936 11923825 4172014192924 6 315 23126 1822921 12 S 10 M 2A2TAF 1 Q40 A% 5 720 34
7 19 M55 7 36 1930 11329025 AAT 204292924 € 315 231 261822V 20 12 S A0 0232737 1 04003 5 7 20 34
13 20058 w474 1 35 1030 11329625 4472014292924 6 315 23126 1622V 20 02 S U090 232737 1 04033 § 72034
LU L R L Ed 1 kL) 1IHLIAIIANIS 4172014092923 6 T15 2T IRIZT 202 FUOAWITITI7 1 OWAT S 72004
am 20055 anard 1 a5 16 A1IZARZT AATZ0AA 132924 & TS 226 AR ZZ V2002 R A0 02 2T AT 1 00 AT S F 20 A4
21 20 b 2 a5 l.!ﬂll!ﬂ!lz!11720[41!3.24.!I! unnlzz"zlulwnnznrlnaaa:!uu

T 2 - 2t 18 1 T 2 34
23 20058 W74 2 35 Ilalll!ﬁsl!!4!?20[4!82'24.3IE 23!20!.22"2“.2llﬂﬂia!?a?lﬂﬂsa!?ﬂﬁ"
< | 5

Complited Sesrch in 355 qensratiors,

62



Figure A.8. Machine schedules and evaluations
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Figure A.9. Modular menu structure of WinMeta v2- (crossover operators)
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Figure A.10. Built-in GA controllers
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APPENDIX B: SOLUTIONS TO PMTT PROBLEM SET

Appendix B provides the results for the best performing TS strategy addressing the
PMTT problem used in this study. The best known results from the literature, the updated

best-known values via the adaptive GA approach and the results of the adaptive GA are

provided.
Table B.1. Results for best TS strategy [23]
TS RESULT
60 JOBS 60 JOBS 40 JOBS 40 JOBS
Problem|2 MACHINES [4 MACHINES| 2 MACHINES |4 MACHINES
1 14677 0 14079 0
2 6990 4006 3946 0
3 17749 155 3335 0
4 73389 0 10095 0
5 35543 2737 19722 0
6 52825 364 26372 0
7 26776 5064 19324 1216
8 8998 0 37789 79
9 17254 0 1055 0
10 21434 6039 1038 0
11 11860 4937 1869 0
12 14991 0 8465 0
13 13303 0 8382 2919
14 6941 0 5869 2704
15 20068 0 22134 1886
16 23883 90 43502 0
17 12222 0 15976 0
18 40237 0 6430 0
19 300 0 28192 0
20 26500 0 2934 0




Table B.2. Best known solutions in literature [23]

BEST KNOWN RESULTS
60 JOBS 60 JOBS 40 JOBS 40 JOBS
Problem|2 MACHINES (4 MACHINES| 2 MACHINES |4 MACHINES
1 14205 0 14079 0
2 6528 2737 3946 0
3 17296 155 3335 0
4 72406 0 10095 0
5 34640 2591 19695 0
6 50492 339 26372 0
7 26660 4744 18565 914
8 8042 0 37513 48
9 16790 0 1055 0
10 20943 4626 1038 0
11 11204 4423 1726 0
12 14080 0 8199 0
13 12806 0 8382 2807
14 6874 0 5860 2704
15 20017 0 21712 1388
16 23883 58 43502 0
17 12222 0 15816 0
18 38948 0 5866 0
19 164 0 27258 0
20 23514 0 2934 0
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Table B.3. Best known values updated by adaptive GA

UPDATED BEST KNOWN RESULTS
60 JOBS 60 JOBS 40 JOBS 40 JOBS
Problem|2 MACHINES (4 MACHINES| 2 MACHINES |4 MACHINES
1 14205 0 14079 0
2 6528 2737 3946 0
3 17296 155 3335 0
4 72330% 0 10095 0
5 34578* 2591 19671* 0
6 50138+ 339 26372 0
7 26660 4744 18565 914
8 8030 0 37513 48
9 16790 0 1055 0
10 20899* 4626 1038 0
11 11204 4423 1726 0
12 14080 0 8199 0
13 12806 0 8382 2807
14 6834* 0 5860 2704
15 20017 0 21562* 1388
16 23883 58 43395* 0
17 12222 0 15816 0
18 38948 0 5866 0
19 164 0 27258 0
20 23514 0 2887 0
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Those values marked with a * are contributed by the adaptive GA algorithm devised in

this study.



Table B.4. Results of adaptive GA
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60 JOBS 60 JOBS 40 JOBS 40 JOBS
Problem 2 MACHINES 4 MACHINES 2 MACHINES 4 MACHINES
Number | Min. | Max. | Avg. |Min.|Max.| Avg. [ Min. | Max. | Avg. [Min. | Max.| Avg.
1 14205 | 15161 | 14525.5 0 0 0.0 ] 14079 | 14986 | 14260.4 0 0 0.0
2 6528 | 6528 | 6528.0|3640| 4981 |4521.6| 3946 | 4242 | 4005.2 0 0 0.0
3 17296 | 17406 | 17351.0| 494 | 1657 | 861.8| 3335| 3335| 3335.0 0 0 0.0
4 72487 | 74230 | 73067.8 0 0 0.0 10095 | 10758 | 10360.2 0 0 0.0
5 3517736652 |36183.5[2591 | 3275|2840.4 (19671 | 19967 | 19760.8 0 0 0.0
6 50138 (50138 |50138.0| 380 | 557 | 466.2 (2637227959 |27324.2 0 0 0.0
7 26535126916 |26796.8 5221 | 5919 | 5444.0] 18565 | 19099 | 18671.8 | 1160 | 1280 | 1220.0
8 8030 | 8439 | 8232.8 0 0 0.0]37513 |38055|37834.4| 196| 255| 225.5
9 17052 | 17558 | 17288.0| 144 | 316| 196.6| 1055| 1938 | 1425.6 0 0 0.0
10 20899 (22428 | 21816.3 (4917 | 5742 |5338.0| 1038 | 1473 | 1125.0 0 0 0.0
11 11204 | 12756 | 12220.0 |1 4540 | 5270 |4919.6| 1726 1873 | 1814.2 0 0 0.0
12 14080 | 14485|14181.3 0 0 0.0] 8199| 8199 | 8199.0 0 0 0.0
13 12806 | 13103 | 12880.3 0 0 0.0] 8382 | 8382 | 8382.0| 3088 | 3088 |3088.0
14 6834 | 6922| 6868.0 0 0 0.0] 5860 | 6335| 6080.2| 2704 | 2704 |2704.0
15 20422 {20661 | 20501.8 0 0 0.0121712|21977|21765.0| 1391 | 1740 | 1565.5
16 24081 (25118 |24507.0| 342 | 500| 428.0]43395|43606 |43437.2 0 0 0.0
17 12267 12979 12590.8 0 0 0.0 1581616095 | 15871.8 0 0 0.0
18 39536 | 40176 | 39793.0 0 0 0.0] 5866| 6391 | 5971.0 0 0 0.0
19 351 517 392.5 0 0 0.027258 27258 |27258.0 0 0 0.0
20 23911 | 25158 |24369.0 0 0 0.0 2939 | 2954 | 2948.0 0 0 0.0
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