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ABSTRACT 
 

GENETIC ALGORITHM APPROACH TO PARALLEL MACHINE 

TOTAL TARDINESS PROBLEM 
 

In this thesis, an adaptive control mechanism to reduce the parameter dependence of 

a Basic Genetic Algorithm (GA) is developed. The approach is implemented over the 

Parallel Machine Total Tardiness problem (PMTT), which consists of a set of independent 

jobs to be scheduled on a number of parallel processors to minimize total tardiness. As this 

study considers the generic version of PMTT, distinct ready times, processing times, due 

dates and sequence dependent setup times for each job are incorporated. The NP-hard 

nature of the problem renders it a challenging area for research. 

 

Hence, the motivation of this study has been to explore the ability of Genetic 

Algorithms and develop several adaptive control mechanisms to overcome the difficulties 

superimposed on the traditional parallel machine scheduling problem. In order to develop a 

robust GA mechanism, the key elements of the metaheuristic such as generation type, 

initial population structure, parent selection, crossover and mutation are investigated. 

Based on a Basic Genetic Algorithm, adaptive control mechanisms are implemented, 

which are structured over some parameters that are found to be critical for the GA 

performance.   

 

The performance evaluation for the strategies developed is done on a set of problems 

obtained from the literature, where the same problems are addressed in two different 

studies, one consisting of a GA approach and the other study consisting of a deterministic 

Tabu Search approach to the problem. The GA approach developed is extensively tested. 

As a result, it is seen that the adaptive GA approach developed in this study yields good 

quality results with respect to the optimal/best-known values reported in the literature. 

Also, some of the best-known results reported in the literature are further improved, which 

is a notable achievement from the GA point of view.  
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ÖZET 
 

PARALEL MAKİNA TOPLAM ARTI GECİKME PROBLEMİNE 

GENETİK ALGORİTMA YAKLAŞIMI 
 

Bu tezin konusu olan çalışmada Genetik Algoritmaların (GA) parametre 

bağımlılıklarını azaltmak için uyarlanımlı bir kontrol mekanizması geliştirilmiştir. 

Geliştirilen yaklaşım, bir takım bağımsız işin birkaç parallel işlemci üzerinde toplam artı

gecikmeyi enküçüklemek amacıyla çizelgelenmesinden oluşan Paralel Makina Toplam 

Artı Gecikme problemi (PMTAG) üzerine uygulanmıştır. Bu çalışma, PMTAGnin en genel 

şeklini ele aldığından her iş için sıfırdan farklı ve ayrı termin tarihleri, sisteme giriş

zamanları, işlem zamanları ve dizine bağlı iş hazırlık zamanları dahil edilmektedir. NP-Zor 

yapısı nedeniyle problem, ilginç ve iddialı bir araştırma konusu haline gelmiştir.  

 

Bunlara bağlı olarak, bu çalışmanın motivasyonu Genetik Algoritmaların özellik ve 

yeterliklerini inceleyerek çeşitli uyarlanımlı kontrol mekanizmaları geliştirmek yönünde 

geleneksel paralel makina çizelgeleme probleminin getirdiği zorlukları aşmaktır. Sağlam 

bir GA mekanizması geliştirmek için, meta-hüristik yöntemin jenerasyon tipi, başlangıç

toplumunun yapısı, ana-baba seçimi, gen kesiştirme ve mutasyon gibi temel öğeleri 

incelenmiştir. Basit bir Genetik Algoritmanın performansı için kritik olan bir takım

parametreler baz alınarak uyarlanımlı kontrol mekanizmaları geliştirilmiştir.  

 

Geliştirilen yöntemlerin performans değerlendirmesi, literatürden alınmış ve biri 

deterministik Tabu Arama, diğeri de Genetik Algoritmalardan oluşan iki ayrı çalışma ile 

ele alınmış birtakım problemler üzerinde yapılmıştır. Bu tezin konusu olan GA yaklaşımı

ayrıntılı deneylerle incelenmiştir. Sonuç olarak, geliştirilen uyarlanımlı GA yönteminin 

literatürde yayınlanan “bilinen en iyi” veya “en iyi” çözümlere göre yüksek kalitede 

sonuçlar geliştirdiği görülmüştür. Bunun yanısıra, literatürde yayınlanan bazı “bilinen en 

iyi” sonuçlar daha iyi çözümler bulunarak geliştirilmiştir. Elde edilen geliştirilmiş

çözümler, GA açısından oldukça önemli bir başarı ve kazanımdır.  
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1.   INTRODUCTION AND PROBLEM DEFINITION 
 

The problem addressed in this thesis is the Parallel Machine Total Tardiness Problem 

(PMTT), a problem frequently encountered in the industry. The classical parallel machine 

total tardiness problem (PMTT) can be stated as follows: There are n jobs to be processed 

on m continuously available identical parallel machines. Each job is processed on the given 

machine for the time duration that is called the processing time of that operation. Each 

machine can process only one job at a time, and each job can only be processed on only 

one machine. The aim is to minimize the cost of processing these jobs by finding a suitable 

processing order on each machine. Hence, a cost function reflecting the measure of 

goodness of each solution alternative is needed. Due date related objectives are common 

and often, the objective is to determine a schedule such that total tardiness is minimized, 

where tardiness of a job is the amount of time its completion time exceeds its due date. 

 

Having outlined the most general description of the problem as such, it is necessary 

to introduce some fundamental concepts, characteristics and assumptions. 

 

The variables that define a scheduling problem need to be mentioned next. The 

problem definition starts with a set of jobs, n, that can be indexed as i = 1,2,3,…,n, to be 

processed on a set of machines, m, indexed as j = 1,2,3,…,m. Hence, for each job i, the 

following defining variables are to be specified.  

 

• ri: This term defines the earliest time that the processing of that job can begin and is 

called the ready time or release time of each job i. Therefore, this is the time at which 

the job is released into the shop.  

• pi: This is the processing time of each job on any of the machines, unless there are 

differences in the machines, like technology differences. In the latter case the 

processing of a given job takes up different amounts of time on each machine and 

therefore requires a second index for the processing time of the job to indicate which 

type of machine the job is being processed on. 
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• sik: This parameter defines the sequence dependent setup time of the job on any given 

machine, meaning that the machine would require “sij” time units of setup if job i is 

to be processed immediately after job k. 

• Si: This parameter defines the slack time of the job on any given machine, defined as 

di – pi – t. 

 

To completely define the problem, it is important to know whether the problem 

considered is static or dynamic. In static problems, a certain number of jobs arrive to the 

job shop simultaneously, where the shop is idle and ready to start processing immediately. 

In dynamic job arrivals, the shop is continuous. However, job arrivals can be either 

stochastic, which means that job arrivals can occur at any time throughout the operation of 

the machines, or deterministic, in which case the arrivals are dynamic but the arrival times 

are all known and no stochastic intermittence is allowed [2]. In this study, the problem 

addressed is the deterministic dynamic parallel machine scheduling problem. 

 

In most studies from the literature the general assumption is that the machines are 

identical, all jobs are available at time zero and setup times do not exist. These 

assumptions are far too simplistic when confronted with the real world situations. Actually, 

in most real world problems there exist distinct job ready dates, uniform parallel machines 

that are capable of processing these jobs at different speeds (i.e. new machines versus old 

machines) and sequence dependent setup times. Therefore in this study, these features are 

also incorporated into the model to approach the problem to real world situations at the 

expense of complicating the problem with respect to the classical one.  

 

In summary, this study is concerned with independent jobs to be scheduled on a set 

of uniform, parallel machines with the total tardiness measure as the optimization criterion. 

The jobs have their individual processing times, pi, and due dates, di and the problem is 

deterministically dynamic, in that the jobs have predefined, distinct and non-zero ready 

times. Furthermore, sequence dependent setup times between consecutive jobs on each 

machine are incorporated in the problem definition. The objective is to minimize the total 

tardiness of all the jobs, denoted by ΣTi, where Ti is the respective tardiness of job i 

calculated as Ti = max{0, Ci - di}, where Ci is the completion time of job i.  
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Based on this detailed model definition, it is necessary to develop a suitable solution 

method for the problem. It is known that each scheduling problem is an optimization 

problem over the set of active schedules, but this set is so large that it does not allow the 

option of complete enumeration as a problem solving strategy [3]. The cardinality of a 

scheduling problem is the most important factor that restricts the applicability of complete 

enumeration as a solution technique. For a general scheduling problem with n jobs and m 

machines the cardinality has an upper bound of (n!)m, and even for very small values of n 

and m, the cardinality becomes very large and grows exponentially with increasing values 

of these parameters. Therefore, other means of tackling the problem are necessary. There 

are many different methods of attacking the problem, but the feasibility of the choice of 

method depends on the complexity of the problem. Therefore, knowing whether a problem 

is easy or hard from the complexity point of view is essential for determining the solution 

approach that will be suitable. The PMTT problem is NP-hard, even for a single machine 

[4]. Therefore, exact methods that become computationally infeasible with increasing 

problem size are limited to special cases like common due dates and equal processing 

times. There is a large class of heuristics that are based on list scheduling where the jobs 

are first prioritized according to some rule and then dispatched in this order to the machine 

with the earliest finishing time.  

 

Another class of heuristic techniques consists of neighborhood search strategies, 

which can get very close to the optimal at reasonable computational efforts. These are 

simple strategies that perform intensive search by trying to improve the current solution as 

much as possible at each stage. Actually, they are rather myopic, but extensions to 

neighborhood search strategies have been developed under the name “Metaheuristics”. The 

most popular techniques among metaheuristics are Tabu Search, Genetic Algorithms and 

Simulated Annealing.  

 

The idea behind Tabu Search (TS) is actually very simple in that it tries to avoid 

being caught in local optima present in the solution space. When a local optimum is 

reached, Tabu Search selects the best available move even if it deteriorates the objective 

function value. However, the next move to be chosen will take the search back to the local 

optimum, since it will be the best move around. Hence, that particular move back to the 
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local optimum is prohibited so that the search can proceed to other unexplored regions of 

the search space. 

 

Simulated Annealing (SA) is a method constructed in analogy with the cooling and 

re-crystallization process of hot materials. Again, it is not always the apparent best move 

that is selected but the best move with highest probability, the second best move with next 

highest probability and so forth [2]. These probabilities decrease exponentially based on 

the size of the improvement given by each move. A temperature factor, which simulates 

the effect of temperature in the annealing process is used and regulating the temperature is 

the way of escaping from local optima in Simulated Annealing.  

 

Genetic Algorithms (GA) are artificial intelligence techniques that simulate the 

natural evolutionary process. The general strategy is to generate a population consisting of 

individuals, where each individual constitutes a solution to the problem at hand and is 

represented by a chromosome encoding. The chromosomes are made of genes, which can 

be considered to be the building blocks and carriers of the genetic information. Among the 

population members, the fittest individuals are allowed to reproduce and the new offspring 

inherit the characteristics of the parents. The parents are recombined genetically by 

crossover and the genetic information transmitted from the parents is sometimes prone to 

mutation, which consists of small changes that occur unpredictably in the genotype. The 

aim is to increase the average fitness of the population from one generation to the next, 

where fitness is a measure of solution quality. Genetic Algorithms have proven quite 

suitable for scheduling problems. In scheduling context, each chromosome either 

constitutes a particular sequence of jobs, or contains the information/instructions to 

construct a particular sequence of jobs. The fitness of the chromosome is calculated based 

on the objective function value. The parents are selected to reproduce with a given 

probability and this probability of selection is fitness based. The new children formed 

constitute the new generation and in this manner, the population will eventually converge 

to a population of good schedules, hopefully containing the global optimum as well.  

 

This thesis presents a GA application to the above defined generalized version of 

Parallel Machine Total Tardiness problem (PMTT). GAs have a high number of 

parameters and complementary strategies that can be regulated for high performance, but 
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this introduces the difficulty of tailoring the strategies and fine-tuning the parameters, not 

only for a given problem but also with respect to problem size. Another challenge is to 

prevent premature convergence of GA. In this thesis, several control mechanisms that try 

to control the population diversity in order to overcome premature convergence are 

developed and incorporated in GA. 

 

The next section presents a literature survey and the theoretical grounds of Genetic 

Algorithms. Next, the details of the Basic Genetic Algorithm developed for this thesis and 

its experimentation follow. Finally, the adaptive control over the Basic GA approach and 

the experimental results are presented. The thesis ends with the conclusions derived from 

this study. 
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2.   LITERATURE SURVEY 
 

This section summarizes general Genetic Algorithm approaches to various types of 

combinatorial problems as well as metaheuristic approaches to the Parallel Machine 

Scheduling problem in particular.  

 

A paper by Grefenstette [5] shows that GAs are suitable for fine tuning the 

parameters of the optimization algorithms used as well as the optimization of the complex 

system itself. Liepins and Hilliard [6] define GAs in their context: how and why they work, 

why they fail and the methods to overcome their undesirable behavior are the questions 

they address in their paper. In addition, they provide the basics of Genetic Algorithms like 

schemas, building blocks, and implicit parallelism.  

 

One of the early scheduling applications of GA consists of a study by Reeves [7], 

where the permutation flow shop sequencing problem is treated on an enhanced version of 

simple GA using C1 crossover, adaptive mutation rate and a seeded population. This study 

showed that GA performed very well with increasing problem size. The same GA 

outperformed some naive neighborhood searches and produced results comparable to a 

simple tabu search heuristic in another study by Reeves [8].  

 

A study by Ahuja et al. [9] defines a greedy genetic algorithm for the quadratic 

assignment problem (QAP), where they investigate several enhancements to GAs and 

illustrate them over the QAP since they claim that GAs in their elementary forms are not 

competitive with other heuristic algorithms like simulated annealing and tabu search. They 

improve the overall performance of the GA with the greedy nature of these enhancements 

and stress that overuse of such greedy methods diminishes the diversity in the population. 

They incorporate various ideas into their greedy GA and test each of them separately to 

study the marginal effect over the algorithm performance. They compare their results on all 

benchmark instances in QAPLIB, a well-known library of QAP instances and obtain the 

best-known solution in most of the problems.  
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Liu and Tang [10] propose a modified genetic algorithm (MGA) for single machine 

scheduling with ready times. The algorithm they propose improves the simple genetic 

algorithm by introducing (1) a filtering step to filter out the worst solutions in each 

generation and fill their positions with the best solutions of the previous generations, and 

(2) a selective cultivation step to cultivate the most promising individual when no 

improvement is made for several generations. Their results show that the modified genetic 

algorithm is significantly better than the simple genetic algorithm. The MGA also 

outperforms three very effective special purpose heuristics at the expense of longer 

computation time. 

 

Another Genetic Algorithm implementation is that by Ulusoy et al. [11]. In their 

study, the simultaneous scheduling of machines and automated guided vehicles (AGVs) is 

considered with the aim of minimizing the makespan. They present a special uniform 

crossover operator that produces one offspring from two parents while transferring any 

patterns of operation sequences and/or AGV assignments that are present in both parents to 

the child. Their results indicate that in the majority of the problems the optimum is 

reached. Comparison with the time window approach shows that the GA performs better in 

most of the problems. 

 

Hybrid approaches to the Genetic Algorithm strategy are also available in the 

literature. For instance, Cheng and Gen [12] investigate hybrid genetic algorithms 

(memetic algorithms) to solve the parallel machine-scheduling problem where the aim is to 

minimize the maximum weighted absolute lateness. They propose to use GAs to evolve the 

job partition and then apply a local optimizer to adjust the job permutation to push each 

chromosome to climb to its local optima. They show that the hybrid genetic algorithm 

outperforms the GAs and the conventional heuristics. A memetic algorithm for the total 

tardiness SMS problem is that developed by França et al. [13]. In their study they consider 

due dates and sequence dependent setup times. The main contributions with respect to the 

implementation of the hybrid population approach are a hierarchically structured 

population conceived as a ternary tree and the evaluation of three recombination operators. 

They develop several neighborhood reduction schemes to introduce efficiency in the 

search procedure. They also compare a pure genetic approach and the memetic algorithm 
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against a multi-start algorithm employing the all-pairs neighborhood and two constructive 

heuristics over a set of randomly generated problems. 

 

Another hybrid heuristic genetic algorithm is proposed by Zhou et al. [14] for the job 

shop scheduling problem, who claim that in order to make GA more efficient and practical, 

the knowledge relevant to the problem to be solved is helpful. They devise a hybrid 

heuristic for scheduling n jobs on m machines with the aim of minimizing the makespan 

where the processing of each job consists of m operations performed on these machines in 

a specified sequence. They integrate list scheduling heuristics such as shortest processing 

time (SPT) and most work remaining (MWKR) into the process of genetic evolution. In 

addition, they adopt the neighborhood search technique (NST) as an auxiliary procedure to 

improve the solution performance. They show that this new algorithm is effective and 

efficient compared to traditional GA, simulated annealing and the heuristic of 

neighborhood search. 

 

Other metaheuristic approaches are also available in the literature when scheduling 

problems in general are considered. For instance, a Simulated Annealing and Tabu Search 

mixture for the scheduling tardiness problem is developed by Adenso-Diaz [15], where the 

effect of the mixed algorithm is tested on a multi job-multi machine environment where the 

jobs have distinct processing times, due dates and weights. Their results validate the use of 

the algorithm. Barnes and Laguna [16] solve the multiple-machine weighted flow time 

problem using tabu search. They obtain high quality results and show the robustness of 

their method with respect to parameter settings. They also show that the computational 

requirements show only a modest growth with respect to problem size. 

 

Min and Cheng [17] present a GA approach for the minimization of makespan in the 

case of scheduling identical parallel machines. In their computation al studies they show 

that the GA proposed is efficient and fit for larger scale identical parallel machine 

scheduling problems. Also, they state that the quality of the solutions obtained is 

advantageous over other heuristic procedures and Simulated Annealing in particular. 

Crauwels et al. [18] present local search heuristics for the SMS problem with batching to 

minimize the number of late jobs and they employ TS, SA, GA and multi-start descent and 

they report that the best results are obtained with GA. 
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Although studies on metaheuristic approaches to scheduling problems in general is 

quite abundant, when jobs are allowed to have distinct arrival times as well as due dates, 

different processing rates on machines and sequence dependent setup times, the literature 

becomes really sparse. There are few studies reported on this more general problem. 

Serifoğlu and Ulusoy [19] present a genetic algorithm for the non-preemptive parallel 

machine scheduling problem where they consider sequence dependent setup times and try 

to minimize the sum of the weighted earliness and tardiness values of all the jobs. Also, the 

problem they consider is dynamic where each job has its own distinct ready time. They 

employ two GA approaches; one with a crossover operator developed to solve multi-

component combinatorial optimization problems and the other with no crossover operators. 

They develop a new crossover called Multi-component uniform order based crossover 

(MCUOX). Balakrishnan et al. [20] also incorporate sequence dependent setups and 

distinct due dates, ready times and earliness/tardiness costs for each job in their study, 

where they treat the jobs with uniform parallel machines that are capable of processing 

jobs at different speeds. They propose a compact mathematical model to solve small sized 

(up to 10 jobs) problems. 

 

A recent study on the general parallel machine scheduling problem is that by 

Cochran et al. [21], where they propose a two-stage multi-population genetic algorithm 

(MPGA) to solve the parallel scheduling problem with multi-objectives. They combine the 

multi-objectives via the multiplication of the relative measure of each objective. They 

arrange the solutions of the first stage into several sub-populations, which become the 

initial populations for the second stage. They employ two different objectives: makespan 

and total weighted tardiness. They also extend their MPGA to apply over three objective 

scheduling problems and show that their algorithm performs better than its counterpart in 

the literature. Also, Glass et al. [22] present a study on unrelated parallel machine 

scheduling using local search, where they state that although the results of extensive 

computational tests indicate that the solution quality of GA is poor, when a hybrid method 

in which descent is incorporated in the GA is employed, the results obtained are 

comparable with SA and TS. 

 

Bilge et al. [23] devise a Tabu Search algorithm for parallel machine total tardiness 

problem, where they develop a totally deterministic TS approach. They conduct their 
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experiments on the set of problems that were introduced by Ulusoy and Şerifoğlu [19]. In 

their study, they obtain results that are much superior to the ones available in the literature. 

The neighborhood used in this TS has a “hybrid” structure in which the complete “insert 

neighborhood” is enlarged by including swap moves for jobs that are on different machines 

only. Hence, the neighborhood also includes moves that create different sequences without 

changing the number of jobs on machines. Also, they develop candidate list strategies for 

situations where the neighborhood of a solution is large or its elements are expensive to 

evaluate. Candidate list strategies are essential to restrict the number of solutions examined 

on a given iteration and the purpose of these rules is to screen the neighborhood so as to 

concentrate on promising moves at each iteration [23]. They develop three candidate list 

strategies for the PMTT problem and report that the time performance and the quality of 

the candidate list strategies are superior to the case when no candidate list strategy is 

employed.  
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3.  BASIC GENETIC ALGORITHM FOR PMTT 
 

The following subsections describe the Genetic Algorithm approach developed for 

the PMTT problem addressed in this thesis. A general overview of the concepts and theory 

of the metaheuristic are provided in Section 3.1. Following the overview, the details of the 

strategy implemented for the Parallel Machine Total Tardiness Problem are provided.  

 

3.1.  Genetic Algorithms 

 

Genetic Algorithms (GA) easily specified and well defined algorithms that 

incorporate a probabilistic component. They provide means for exploring irregular and 

poorly understood search spaces for complex problems. Hence, they are special artificial 

intelligence techniques that can attack large-scale combinatorial optimization problems, 

many of which are NP-Hard. They present approximate solutions in fairly good amounts of 

time. They are general-purpose search methods that simultaneously explore and exploit the 

search space and they have been successfully applied to various problems that could not be 

solved by more conventional computational techniques. Holland developed the Genetic 

Algorithm and presented his theoretical foundation. The motivation of his formulation was 

based on the pressure of natural selection over sexual reproduction, which in conjunction, 

led nature to develop species of high adaptation to their environment, over time. 

Evolutionary theory foundations state that the needs and requirements of a continually 

changing and complicated environment bring forth the necessity for adaptations that can 

render a species fit for that environment. Hence, GAs imitate the natural evolution 

phenomenon, and they constitute a class of search algorithms based on the mechanics of 

natural selection and natural genetics [24].  

 

GAs combine survival of the fittest among string structures with a structured but 

randomized information exchange to form a search algorithm with the innovative style of 

human search [24]. The key elements of a GA originate from the natural genetics 

terminology. The central role played by the crossover operator for genetic recombination 

was the major distinction between the earlier formulations. Mutation is defined within this 

formulation as an infrequent operator that is used to preserve population diversity. 
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There are many possible variants to the basic GA, but the fundamental mechanism 

operates on a population of individuals, which are strings or chromosomes, made of genes 

that carry the feature information of the chromosomes, arranged linearly. The mechanics of 

a basic GA is very simple and involves only the process of copying strings and swapping 

partial strings. However, the simplicity of the procedure does not reduce its power, and this 

is one of the most important attractions of the GA approach [24]. Each individual in the 

population is evaluated for its fitness and a gene pool is formed. Genes are the major parts 

that transmit information from the parents to the child and they allow the inheritance of 

features. Then recombination and mutation are the basic operators introduced. In every 

generation, a new set of individuals is formed from the old population by combining parts 

of the fittest individuals in the old population. Hence, the individuals resulting from 

Reproduction, Crossover and Mutation constitute the next generation’s population. 

Reproduction is simply copying individual strings so that they can be used for producing 

children. The strings to be copied are chosen with respect to their objective function 

values, or fitness values in the population. Therefore strings with higher fitness values have 

a higher probability of contributing to the production of offspring for the next generation 

[24]. 

 

GAs are different from other search procedures in many ways. For instance, GAs 

work with a coding of the parameter set instead of the parameters themselves [24]. It is 

important to note that many optimization methods move from one single point in the 

solution space to the next using some transition rule to make a choice for the next point. 

These point to point methods however are vary dangerous for solution spaces containing 

many local optima, for the risk of being trapped in one of them is quite high. GAs search 

from a population of points and not just a single point in the entire solution space, and 

since they work on a rich population of solutions simultaneously, they literally climb many 

hills in parallel. This feature of Genetic Algorithms reduces the risk of being trapped in 

local optima as compared to the other search methods that go from point to point [24].  

 

However, the convergent behavior of GAs, which cannot guarantee optimality, 

stands as a strong problem against the GA approach with respect to other optimization 

grounds. There are ways to slow down or prevent this premature convergence. 

Nevertheless, it should be noted that GAs work out interesting areas in the search space 
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rather quickly. GAs cannot provide the guarantee of some more deterministic approaches, 

but at the compensation of not sacrificing flexibility and globality in the search process. 

This makes GAs more suitable for numerous problems that cannot be treated by techniques 

that indeed guarantee optimality. 

 

GAs use the objective function information, not derivatives or other information, and 

this characteristic makes them actually blind, since they do not require any other 

information while searching for better solutions. Finally, GAs employ probabilistic 

transition rules, not deterministic rules, and they use random choices to guide the search to 

regions of the search space that promise improvement [24].  

 

Furthermore, if for the problem being handled, some convergent yet local search 

methods exist, then an attitude to consider is the use of hybrid techniques where the search 

starts with GA to sort out the interesting hills in the problem and then to climb the hills via 

the locally convergent schemes once the GA determines the best regions [24].   

 

3.2.  Chromosome Encoding  

 

The chromosome representation used in this study represents each job in the 

schedule as a gene in the chromosome. Hence, each job in the schedule is coded in the 

form of a gene and forms the genotype of the chromosome. The optimality criterion, 

namely, the total tardiness of each schedule is reflected as the fitness of the chromosome, 

and this in turn, constitutes what is known as the phenotype of the individual.  

 

In this GA, a chromosome consists of (n+m-1) genes, where digits from one to n 

denote the jobs. The remaining (m-1) genes consist of “*”s and are used to separate the 

machines. Hence, in order to differentiate from one machine to the other on the 

chromosome, an asterisk is used. By this means, the entire set of jobs can be encoded on a 

single string in machine order. An example to depict this definition is provided in Figure 

3.1. 
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Figure 3.1. Chromosome encoding 

 

3.3.  Initial Population Generation 

 

It is a well-known fact [24] that the structure of the initial population plays an 

essential role in determining the efficiency of the Genetic Algorithm. However, most GA 

implementations in literature employ randomly generated populations for initiation. An 

enhancement that finds wide application is to feed some good solutions to the initial 

population, usually consisting of some structured solutions obtained via some list 

scheduling heuristics. By this means, the convergence of the GA is rendered more efficient 

but at the same time, the quality of the local optimum to which the population will 

converge is increased. 

 

Based on the chromosome representation used in this study, given n jobs to be 

scheduled on a single machine, there are n+(m-1) genes to be encoded on a given 

chromosome. Therefore, initial population is randomly created by the following algorithm: 

 

• Randomly select one of the n+(m-1) alleles to be encoded (for the n jobs and (m-1) 

asterisks (*) used as machine schedule separators in the chromosomes). 

• Place the selected allele in the first unfilled gene location on the chromosome. 

• Repeat steps one and two until all n+(m-1) genes are encoded. 

 

It is possible to feed some individuals into the population so that the initial 

population contains individuals of known quality. The method used for the parallel 

machine scheduling problem considered in this thesis is to feed some chromosomes whose 

genotypes consist of encodings obtained via List Scheduling Heuristics (LSH), like Earliest 

Sequence of jobs on each machine 

Machine 1: 1-2-3 

Machine 2: 4-5-6-7 

Machine 3: 8-9 

1 2 3 * 4 5 6 7 * 8 9
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Due Date (EDD), Shortest Processing Time (SPT), Earliest Ready Time (ERT) and 

Shortest Slack Time (SST). These solutions are more structured and most probably of 

higher quality as compared to the randomly generated population members. The number of 

such solutions fed to the population is an important parameter to consider, since such an 

approach poses the risk of heavily biasing the population to cause premature convergence 

to some local optimum in the vicinity of the fed solutions. Therefore, the proportion of fed 

individuals must be considered in proportion to the entire population. Also, the nature of 

the fed solutions is very important. At this stage, the most important LSHs employed in 

feeding the initial population need to be mentioned. SPT and EDD are the two main 

heuristics employed for feeding in this study.  

 

• SPT: A sequence that arranges the jobs in nondecreasing order of processing times is 

called Shortest Processing Time, SPT.  

• EDD: A sequence that arranges the jobs in nondecreasing order of due dates is called 

Earliest Due Date, EDD.  

 

Along EDD and SPT, other LSHs like ERT and SST are also used for feeding the 

initial population. Hence, some good genetic information is inserted within the initial 

population. This genetic information will function as the seed for the production of some 

fitter and structured individuals.  

 

3.4.  Population Generation Approach 

 

In this study, a different population generation approach, which is a different 

mechanism for propagating the population from one generation to the next, is utilized. This 

approach is called Transient Population Generation Scheme. The approach developed 

introduces a transient phase within the transition from one generation to the next. The new 

population consists of a mixture of the old population members and the new offspring and 

by this means a greater chance of survival is given to the individuals from the previous 

population.  

 

Denoting the number of offspring by Nc and the size of the old population by N, the 

Transient Population scheme operates as follows:  
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• Produce the desired number of offspring, Nc, via crossover  

• Form a transient population by combining the old population members with the new 

offspring (hence, the transient population consists of (N+Nc) individuals) 

• Sort the N+Nc individuals in the transient population with respect to their total 

tardiness values 

• Restore the original population size by eliminating Nc individuals from the sorted 

transient population 

 

The operating principle of this elimination scheme is depicted in Figure 3.2. In this 

figure, the transient population consists of 150 individuals, where N, the population size is 

equal to 100 and the number of offspring, Nc, is set to be 50. 

 

Which Nc individuals will be eliminated is a crucial point in determining the 

composition of the new population and a fraction of the old population will always reside 

in the new population. Clearly, this property allows randomness in the composition of the 

new population from generation to generation.  In this study, in order to eliminate the Nc 

individuals from the transient population, an elimination scheme is used. 

 

Hence, by looking at Figure 3.2, it is seen that from the sorted transient population, 

the worst two individuals are eliminated, after which a grid elimination pattern is used that 

eliminates every other individual. The origin of the individuals in this sorted transient 

population (old members or new offspring) is not known, and therefore the composition of 

the remaining N individuals will also be unknown. Eventually, after all Nc individuals are 

eliminated, there is always a fit portion of the transient population that is left untouched, or 

preserved, to be included in the next population. The size of this preserved portion is a 

function of the size of the original population and the number of offspring produced, and is 

determined to be N-Nc+3 best individuals of the transient population.  

 

By regulating the two population parameters N and Nc, the size of this untouched 

portion of the transient population can also be regulated and this will regulate the speed of 

convergence of the consecutive populations. The number of best individuals to be 

transferred to the next generation affects the average fitness of the next generation as a 

whole. Also, since the size of this untouched portion is determined by N-Nc+3, it can be 
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argued that approaching Nc to N will decrease the quality of the population and suppress 

the dominance of the best individuals that remain. On the other hand, the smaller the value 

of Nc, the lower the chance of improving quality from one generation to the next, which 

corresponds to stagnation since no work is done. Therefore a balance between N and Nc is 

necessary. 

 

Figure 3.2. Transient population elimination scheme 

 

It is worth mentioning that preserving some portion of the transient population is not 

the same as transporting a subset of the old generation to the new generation. The latter is 

referred as population gap in the GA context. 
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3.5.  Parent Selection  

 

Parent selection is important in regulating the bias in the reproduction process. 

Roulette Wheel Selection [25] is the parent selection scheme used in this study. In roulette 

wheel selection, the evaluations of the chromosomes are converted to fitness values via 

linear normalization. By this means, premature convergence is prevented by allowing each 

individual to have a regulated share on the roulette wheel. The linearization scheme 

employed in this study is called Ranking Roulette Wheel. The reason for this naming is 

that the method converts the total tardiness values to fitness values by creating a ranking of 

the total tardiness values. In other words, the total tardiness values are ranked so as to give 

the population members linearly increasing shares on the roulette wheel. This share 

increases linearly with the rank of each chromosome. The operating principle of Ranking 

Roulette Wheel is depicted in Figure 3.3.  

 

Figure 3.3. Ranking roulette wheel  

• Initialization: 

1. Sort the individuals in the population with respect to their total tardiness 

values in non-increasing order and assign indices i, i = 1,2,3,…,N, where N 

is the population size. 

2. Calculate the fitness fi, for each individual with the following linear 

normalization of the tardiness values: fi, = a + (i-1) × b, i = 1,2,3,…,N, 

where a and b are the linear normalization parameters. 

3. Sum the fitness of all population members to yield the sum of all fitness 

values, F = ∑fi

• Selection: Repeat for Nc iterations (Nc is the number of offspring) 

 

4. Generate a random number, n, between 0 and the total fitness value, F. 

5. The first population member that, when summed its fitness value with the 

fitness values of all its successors yields a value that is greater than n, is 

returned as the first parent. 

6. This process is repeated from Step 4 to select the second parent. 
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Looking at Figure 3.3, it is seen that the fitness of each individual increases as its 

index increases. An example to ranking roulette wheel is as shown in Table 3.1. Based on 

the fitness values presented in Table 3.1, the sum of the fitness values of is F = ∑fi = 290

and Individual-3 has a probability of 30/290 of being selected whereas Individual-5 has a 

probability of 90/290. Further, it should be mentioned that the fitness values are not 

incremented when total tardiness value does not change from one individual to the other. 

Therefore, equally ranked individuals are equally prioritized on the roulette wheel. This is 

a very important property of the linearization scheme, which will be further exploited in 

the diversity evaluation phase to be explained in further sections. 

 

Table 3.1. Ranking roulette wheel, a = 30, b = 20 
Sorted Individual Number Individual-3 Individual-4 Individual-2 Individual-1 Individual-5 

Sorted Tardiness Values 20000 15000 15000 500 200 

Fitness Values, f 30 50 50 70 90 

Range on the Roulette Wheel 1-30 31-80 81-130 131-200 201-290 

In summary, the total tardiness “values” have no influence in the probabilistic 

selection routine, since they are only used to create a ranking of the individuals. Therefore, 

this method introduces some bias towards the fitter individuals, but this bias increases 

linearly with the ranks of the individuals and not the tardiness values.  

 

In order to employ the ranking roulette wheel defined in Figure 3.3, two parameters 

need to be defined: a and b, which are the linear normalization parameters. For this study, 

both of these parameters are set to be equal to one. 

 

3.6.   Crossover Operators 

 

Two types of crossover operators are implemented and tested. These are the Patching 

Crossover Operator and the Dynamic Patching crossover, which is an enhancement over 

the patching crossover operator. Since the solution encoding scheme described in Section 

3.1 incorporates the problem specific structure of the PMTT problem, the crossover 

operators devised in this study do not require any repair mechanisms. The next subsections 

provide the details of the crossover operators implemented in this thesis. 
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3.6.1.  Patching Crossover Operator 

 

Patching crossover operator is based on the crossover operator used in [26], which 

they call uniform order-based crossover. This crossover operator generates a template 

binary string where the number of “1”s and “0”s are controlled. The template binary string 

is mapped on one of the parents, in which case those genes that are positioned in the same 

locations with the “1”s in the template binary string are directly transported to the child 

chromosome. The remaining idle gene locations in the child, which correspond to the 

locations containing zeros in the template binary string, are filled with the genes in the 

second parent. The algorithmic structure of this crossover operator utilized, is as given in 

Figure 3.4. 

 

Figure 3.4. Algorithmic structure of patching crossover 

1. Set the number “1”s in the binary string to be generated to “p” 
2. Randomly generate a binary string with p “1”s as defined in step 1 
3. Randomly choose two parents, Parent1 and Parent2, from the population 
4. Copy the genes from Parent1 corresponding to the locations of the “1”s in 

the binary string to the same positions in the child 
 

Parent1 1 2 3 * 4 5 6 7 * 8 9

Binary 1 0 0 1 0 1 0 0 1 1 0

Child 1 - - * - 5 - - * 8 -

5. Cross out the genes from Parent2 copied from Parent1 so that the repetition 
of a gene in the new offspring is avoided. 

 

Parent2 9 8 * 7 6 1 * 2 3 4 5

6. Fill out the remaining idle gene locations with the uncrossed genes that 
remain in Parent2 by preserving their gene sequence in Parent2.  

 

Child 1 9 7 * 6 5 2 3 * 8 4
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However, a gene that is assigned from the first parent cannot be assigned a second 

time, son in order to prevent this, the genes assigned from the first parent are crossed out 

from the second parent. Consequently, the uncrossed genes are inserted in the child 

chromosome within the sequence they appear in the parent chromosome. In summary, the 

binary string is used as a template to combine the genetic information and properties of the 

two parents. Increasing the number of “1”s in the binary string increases the similarity of 

the offspring to the first parent since there will be an increased number of gene locations in 

the child that match the allele of Parent1. Hence, as the number of “1”s in the binary string 

approaches the total number of genes in the chromosome, the child becomes more similar 

to the first parent. An example to demonstrate this situation is presented in Figure 3.5.  

 

Figure 3.5. Child formation with template binary string 1 

 

• Binary string with 5 “1”s: 
 

Parent1  1 2 3 * 4 5 6 7 * 8 9

Parent2  9 8 * 7 6 1 * 2 3 4 5

Binary1 1 0 0 1 0 1 0 0 1 1 0

Child1  1 - - * - 5 - - * 8 -

Child1  1 9 7 * 6 5 2 3 * 8 4

• Binary string with 8 “1”s: 

Parent1  1 2 3 * 4 5 6 7 * 8 9

Parent2  9 8 11 7 6 1 * 2 3 4 5

Binary2 1 1 0 1 0 1 1 0 1 1 1

Child2  1 2 - * - 5 6 - * 8 9

Child2  1 2 7 * 3 5 6 4 * 8 9
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Looking at Figure 3.5, it is seen that the child produced by the template binary string 

containing eight “1”s is more similar to the first parent. In summary, increasing the number 

of “1”s in the binary string causes the offspring to be increasingly more similar to the first 

parent and this causes minor changes to occur from one generation to the next. If on the 

other hand, the number of “0”s is increased, then the number of locations in the child 

matching the alleles in Parent1 will decrease and the child will be less similar to Parent1. 

As the idle gene locations will be filled up with the remaining uncrossed genes in Parent2 a 

mixed combination of genes will result. Therefore the child chromosome will neither 

resemble Parent1 nor Parent2.  

 

In this study, a fixed number of “1”s is selected for the generation of the template 

binary string and utilized. This number is typically equal to [n+m-1]/2, where n is the 

number of jobs and m is the number of machines considered in the problem.  

 

3.6.2.  Dynamic Patching Crossover Operator 

 

In the patching scheme above, after copying the genes of Parent1, the remaining idle 

locations are filled starting at the beginning of the gene string of Parent2. This corresponds 

to the first machine of Parent2, and starts forming the child chromosome with the first 

machine of Parent2. Hence, this scheme prioritizes the first machine of Parent2 while 

forming the offspring and is most likely to prevent the jobs in the second or third machines 

to be assigned on the first machine in the offspring. In order to overcome this shortcoming, 

a new operating scheme is devised so as to allow each machine in Parent2 to be a possible 

candidate for being the prioritized machine. Hence, at each crossover operation, a different 

combination of machines from each parent is selected. Another way of explaining the 

outlined procedure is the following. The pointer indicating the location from where each 

parent will be traced is varied dynamically from child to child.  

 

Varying the location of the pointer is simply varying the starting machine from 

which gene assignments to the offspring are made. Reflecting this explanation to the 

encoding scheme used in this study, this process is nothing else but to rearrange the 

machine order in a given chromosome (Parent1 or Parent2). This is depicted in Figure 3.6.  
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Figure 3.6. Machine rearrangement in patching crossover  

 

The only constraint for this pointer is that it has to point the first job of a given 

machine so that whichever machine combination is used, it is always the first job of any 

one of the parents that is assigned first. In this manner not only are we preserving the job 

location preferences (which depend on ready time, due date, processing time and slack 

time of each job) on each machine, but we are also allowing the first few jobs of a given 

schedule to become the first jobs of another machine. Hence, intermachine movements for 

jobs are allowed and enhanced by providing care for the location preferences of the jobs 

for total tardiness minimization. In order to illustrate this procedure, the example used to 

demonstrate the Patch Crossover operator is used as depicted in Figure 3.7. 

 

It is assumed that for the crossing over of these particular two parents the parent 

machine combinations are selected to be Parent1-Machine2 and Parent2-Machine 3. Based 

on this combination, the original parents have their machines rearranged so that their first 

machines on their chromosome encodings are Machine2 for Parent1 and Machine3 for 

Parent2. In this manner, based on the number of machines in the chromosome, m2

If the pointer points Machine2 for Parent1, then the original chromosome,  

 
Parent1 Machine1 * Machine2 * Machine3

takes the following pseudo form, 

 
Parent1* Machine2 * Machine3 * Machine1

If the pointer indicates Machine3 for Parent2, then the chromosome 

rearrangement is as follows: 

 
Parent2 Machine1 * Machine2 * Machine3

takes the following pseudo form, 

 
Parent2* Machine3 * Machine1 * Machine2
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combinations of machine prioritization are possible. The proposed mechanism is to 

sequentially use each combination for new parent couple (i.e. for each crossover) so that 

the selected parent-machine combination varies dynamically each time a new child is 

produced.  

 

Figure 3.7. Dynamic patching crossover operating scheme 

 

Hence, each time a new child is to be produced, the next combination in the sequence 

of combinations is used. To exemplify this dynamic pointer variation, the following 

example with three machines is provided. After 9 children are produced, the process goes 

back to the beginning of the parent-machine sequence so that combination 1 is used for the 

production of child 10. 

 

↓
Parent1 1 2 3 * 4 5 6 7 * 8 9

↓
Parent2 9 8 * 7 6 1 * 2 3 4 5

After rearranging the parents as Parent1* and Parent2*: 

 

Binary    1 0 0 1 0 1 0 0 1 1 0

Parent1* 4 5 6 7 * 8 9 * 1 2 3

Child    4 - - 7 - 8 - - 1 2 -

Parent2* 2 3 4 5 * 9 8 * 7 6 1

Child   4 3 5 7 * 8 9 * 1 2 6
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Table 3.2. Machine prioritization sequence for 3 machines  

Child 1 (Crossover 1) (Parent1-Machine1)-(Parent2-Machine1) 

Child 2 (Crossover 2) (Parent1-Machine1)-(Parent2-Machine2) 

Child 3 (Crossover 3) (Parent1-Machine1)-(Parent2-Machine3) 

Child 4 (Crossover 4) (Parent1-Machine2)-(Parent2-Machine1) 

Child 5 (Crossover 5) (Parent1-Machine2)-(Parent2-Machine2) 

Child 6 (Crossover 6) (Parent1-Machine2)-(Parent2-Machine3) 

Child 7 (Crossover 7) (Parent1-Machine3)-(Parent2-Machine1) 

Child 8 (Crossover 8) (Parent1-Machine3)-(Parent2-Machine2) 

Child 9 (Crossover 9) (Parent1-Machine3)-(Parent2-Machine3) 

3.7.  Mutation for PMTT  

 

The GA developed in this study, which applies a transient population methodology, 

also brings an enhancement to the mutation operator. This enhancement is brought with 

respect to the timing of mutation, and each child is mutated with a given probability as 

soon as it is produced. 

 

In this mutation scheme, the transient population is formed and sorted as explained 

previously. Each of the Nc new offspring is mutated with a probability P(M), and then the 

elimination phase is employed to eliminate Nc individuals from the transient population. A 

short discussion is due regarding the operating principle of the mutation operator. First of 

all, applying mutation before eliminating Nc of the individuals poses the risk of losing 

some of the mutated offspring but this introduces a greater degree of randomness. It is not 

possible to know the number of mutants in the next generation, not even the expected 

value, but this approach allows the best individuals to survive in any case. If, for instance, 

a child chromosome, which originally had a very good fitness value, turned out to 

deteriorate after being mutated, then it is possible that the elimination phase will remove 

that mutant. If on the other hand, mutation improves the child chromosome, then it is 

highly likely that the mutant will survive through the elimination scheme. Therefore, 
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mutating before elimination will, at the risk of losing some of the mutants, incorporate 

further randomness into the structure of the GA.  

 

3.7.1.  Swap Mutation Operator 

 

The mutation operator consists of swapping any two randomly chosen genes in a 

chromosome [12]. A modification is incorporated into the well-known swap mutation 

operator to strengthen its influence on the GA. This modification is called “mutation 

strength” and is simply the measure of the strength of the mutation operator in terms of the 

maximum number of swap moves that are performed. If the strength of the mutation 

operator is chosen to be one, then it performs a single swap move if a given probability 

P(M) is satisfied. For instance, when the strength of the mutation operator is selected to be 

four, then the mutation operator performs at most four consecutive swaps on the individual 

chromosome. These swaps are applied on totally random locations, and therefore the four 

swap moves are independent.  

 

This modification into the GA mutation operator has many advantages, one of which 

is modifying the strength of the impact of mutation on the chromosome depending on the 

nature of the problem being considered. Some problems may require high diversity within 

the search procedure and mutation strength allows for that. The other advantage is that 

mutation strength can be regulated with respect to problem size. For instance, given a 

chromosome of 40 genes, mutation of strength “one” may perform very well. However, 

when the problem instance is of larger size, say 100 genes in one chromosome, than a 

single mutation will not have the same impact it has on the 40-gene chromosome. Hence, 

this can be accounted for by increasing the mutation strength accordingly.  

 

In order to study the effects of mutation strength, the example depicted in Figure 3.8 

is presented. In this figure, the swap mutation operator is applied over a chromosome 

consisting of 11 genes. The first mutation strength is set to one and the second to two. The 

relative effects can be seen in this figure.  
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Figure 3.8. Effect of mutation strength in swap mutation 

 

Individual 1   1 2 3 * 4 5 6 7 * 8 9

• Mutation Strength = 1 

 

Individual 1   1 2 3 * 4 5 6 7 * 8 9

Individual 11 1 2 3 * 6 5 4 7 * 8 9

• Mutation Strength = 2 

Individual 1   1 2 3 * 4 5 6 7 * 8 9

Individual 12 1 2 8 * 6 5 4 7 * 3 9

(1) 

(1) 

(2) 
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4.  PRELIMINARY EXPERIMENTATION WITH BASIC GENETIC 

ALGORITHM  
 

This section provides the details of the experimental procedure followed with the 

Basic Genetic Algorithm approach designed. The experimentation performed at this stage 

consists of testing the effects of the various parameters used in the GA approach. Therefore 

the basic strategies outlined in Chapter 3 are applied over a set of parallel machine 

scheduling problems obtained from the literature. The necessary parameter tuning is done 

at this stage of the experimentation and based on this extensive search, the best performing 

parameter settings are determined. The outcome of this preliminary analysis over the Basic 

GA approach is to establish those parameters that are dominant in the performance of the 

GA. Thus, those parameters that are shown to be sensitive are set to their best values at this 

phase of experimentation. Eventually, based on this analysis, an adaptive mechanism that 

will control the most sensitive parameters in the GA approach is developed in the next 

chapter. The experimentation and results for the control strategies incorporated are then 

presented and analyzed in Chapter 6.   

 

The experimentation is performed by means of a software called “WinMeta v2”, 

which is implemented in Visual C++. The Genetic Algorithm strategies are tested via 

WinMeta and the results are reported in the following sub-section. The solution strategy to 

be applied over each problem can be specified by the user by selecting a combination of 

the strategies implemented for Genetic Algorithms via the user friendly GUI (Graphical 

User Interface) of WinMeta. WinMeta allows ease of experimentation and flexibility in the 

strategies to use as well as ease of analysis of results via detailed output report files. 

Various sample screens from the user interface of WinMeta are provided in Appendix A, 

where the detailed parameter menus, GUI, and capabilities of the software are 

demonstrated.  

 

Experiments are conducted on a Pentium III – 800 MHz CPU, Host Bus 200 MHz 

with 192 MB RAM. The next subsection presents the details of the problem set used for 

experimentation, obtained from the literature. 
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4.1.  Problem Set 

 

The problem set used for experimentation consists of parallel machine scheduling 

problems of 40, and 60 jobs, developed and tested by Sivrikaya-Şerifoğlu, and Ulusoy 

[19]. These problem sets are as follows: Instances with n = 40, and n = 60 were randomly 

generated, 20 distinct instances being generated for each group.  

 

It has been assumed that machines belong to one of two different types, which have 

the same characteristics except that they have different processing times. Type II machines 

represent an older technology. The processing time of a job on a Type II machine is 10-20 

per cent greater than its processing time on a Type I machine. Similarly, setup times on a 

Type II machine are 20-40 per cent larger than the corresponding setup times on a Type I 

machine. Processing times of a job j on the Type I machine, pj
I follow the uniform 

distribution U [4, 20]. To generate the processing time of job j on the Type II machine, 

which is denoted as pj
II, a multiplier is chosen randomly from [1.10, 1.20] and is applied to 

the processing time of job j on the Type I machine. 

 

Setup times on Type I machines, denoted as aI, are taken to be uniformly distributed 

with U [1, Amax ] where two levels of Amax are utilized in this study. Again a multiplier 

chosen from [1.20, 1.40] is employed to compute the setup times on the Type II machine, 

denoted as aII. Ready times are assumed to follow the uniform distribution U [0, Rmax], 

where Rmax is the maximum ready time. Here, Rmax = [( IIp + IIa )/(N/M-1], where [x] is 

the smallest integer greater than or equal to x, and IIp and IIa are the average processing 

time and setup time on machine Type II respectively. The due date of job j is taken to to be 

the sum of its ready time, processing time on the Type II machine, maximum time to setup 

a Type II machine for the processing of job j, and a slack value. Due dates are computed 

according to the formula dj = rj+maxi aij
II+pj

II+slack. It is assumed that half of the machines 

belong to Type I and the other half to Type II. 

 

The best solutions for the above-defined problem set are presented by Bilge et al.

[23]. They apply a deterministic TS algorithm and obtain high quality solutions with 

respect to the earlier results from the literature for the same problem set. The next 
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subsections provide the details of the experimentation phase conducted for the Genetic 

Algorithm approach. 

 

4.2.  Performance Measures 

 

For each strategy, the performance evaluation adopted for this study consists of a 

comparative relative measure, which takes the best-known value for the problem instance 

reported in the literature [23] as a basis. In this performance measure, the relative 

deviations of the GA and TS [23] approaches over the best-known value for the problem 

instance are traced for each set of problems consisting of 20 instances. These relative 

improvements are named as GA∆ and TS∆ . These terms are defined in the following 

equations:  

 

( )∑
=

−=
20

1j
jiji GALiteratureinReported ValueBest 

20
1GA∆ (4.1) 

 

where i= 1,2,3,4,5 denotes each different seed used for replication in the GA experiments. 

In this notation, j denotes the instance number in a given problem set, where j = 1,2,…,20 

for the problem set treated in this study .  

 

( )∑
=

−=
20

1j
jj TSLiteratureinReported ValueBest 

20
1TS∆ (4.2) 

 

Again, in this notation, the index j denotes the instance number in the problem set 

used for experimentation. Since the GA experiments are performed with five replications, 

either the average or the minimum of the five seeds is considered for evaluation. These are 

computed as shown in the following two equations by using the GA∆ i values obtained for 

each respective seed: 

 

∑
=

=
5

1i
iAVG GA∆

5
1GA∆ (4.3) 

{ }iiMIN GA∆minGA∆ = (4.4) 
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Finally, the ratio of these relative improvements is computed and used for a 

comparison of the relative achievements obtained via each metaheuristic. By looking at 

this formulation, it is clear that the aim in this study is to obtain as low a ratio as possible, 

where the ratios are defined as follows: 

 

TS∆
GA∆OR 

TS∆
GA∆ MINAVG  (4.5) 

 

In Appendix B, Table B.1 displays the TS results for the best strategy reported by 

[23]. Table B.2 reports the best-known solutions as presented by the same paper. However, 

in the experiments performed in this study some of the best-known values to the literature 

are further improved and these are also given in Table B.3. 

 

4.3.  Experimentation and Numerical Results for the Basic GA  

 

For the preliminary experimentation with the Basic GA approach, only the 40 job-2 

machine problem instances are considered. The stopping criterion for the genetic search is 

set to be 10000 non-improving generations, and each experiment is replicated with five 

different seeds. The parameters of the Basic Genetic Algorithm explained in Chapter 3 are 

fine-tuned. 

 

The strategy in the experimentation over the Basic GA is to select the best 

performing parameter settings among the tested. By examining the properties of the 

strategies tested, it is possible to select the best performing parameter values. Based on 

this, the essential parameters are searched and the results are as presented in the following 

tables. 

 

First of all, population size is fine-tuned. The number of offspring, namely Nc, is set 

to be the half of the population size “N”. Population size is varied from 100 to 200 with a 

step size of 25. The search for population size is done by setting the P(CO) to be 100 per 

cent and P(M) to be 40 per cent. The results are given in Table 4.1. Although the best 

population size occurs when N=150, and Nc=75, a careful examination of the results 

shows that increasing the population does not provide further improvement. Considering 
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the higher computational requirements of the crowded populations, it is reasonable to set 

the population size N to be 100, and Nc to be 50, which seems to be enough to span the 

problem solution space. The idea for improving the search space covered, in this thesis, is 

not increasing the number of individuals in the population. After a certain number of 

individuals are provided in the population, trying to employ more number of individuals is 

nothing more than incorporating a brute force search. On the contrary, the effectiveness of 

the individuals is tried to be increased in the following chapters. 

 

Table 4.1. Preliminary results for population fine-tuning 

P(CO) P(M) N Nc GA∆ AVG GA∆ MIN TS
GAAVG

∆
∆

TS
GAMIN

∆
∆

100 40 100 50 2617.220 2325.600 14.703 13.065 
100 40 125 63 2571.690 2291.500 14.448 12.874 
100 40 150 75 2414.200 2275.200 13.563 12.782 
100 40 175 88 2600.030 2469.750 14.607 13.875 
100 40 200 100 2514.350 2248.500 14.126 12.632 

After, setting the population size, the strength of mutation operator is fine-tuned. 

Strength of the mutation is directly related to the maximum number of swap operations 

allowed per mutation. Mutation strength is tested for three different values, namely one, 

two, and three. Table 4.2 shows the results gathered. It is clearly seen that the problem set 

on which the strategies are tested performs best when only one swap operation per 

mutation is applied. 

 

Table 4.2. Preliminary results for maximum number of swaps used by the mutation 

Maximum 
No. of Swaps P(CO) P(M) N Nc GA∆ AVG GA∆ MIN TS

GAAVG

∆
∆

TS
GAMIN

∆
∆

TS
GAMAX

∆
∆

1 100 40 100 50 2617.220 2325.600 14.703 13.065 15.615 

2 100 40 100 50 2684.340 2432.500 15.081 13.666 16.813 

3 100 40 100 50 2711.540 2580.300 15.233 14.496 16.955 

Looking at Table 4.3, it is seen that the best performing crossover and mutation 

probability combination is P(CO) = 0.80 and P(M) = 0.80. At this stage, it is realized that 

the GA strategy adopted favors high mutation rates, which means that the population 

diversity needs to be high for good performance. Also, based on the fact that the crossover 
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probability is 0.80, it is intuitive to think that the crossover operator’s recombining strength 

can be increased.  

 

Table 4.3. Preliminary results for crossover and mutation probabilities 

P(CO) P(M) GA∆ AVG GA∆ MIN GA∆ MAX TS
GAAVG

∆
∆

TS
GAMIN

∆
∆

TS
GAMAX

∆
∆

0 40 2610.430 2362.800 2788.900 14.665 13.274 15.668 

20 40 2311.300 2133.050 2466.400 12.985 11.983 13.856 

40 40 2320.710 2153.300 2488.100 13.038 12.097 13.978 

60 40 2350.970 2030.950 2674.800 13.208 11.410 15.027 

80 40 2252.930 2100.350 2371.200 12.657 11.800 13.321 

100 40 2173.820 2120.200 2208.650 12.212 11.911 12.408 

0 60 2434.630 2235.300 2758.350 13.678 12.558 15.496 

20 60 2157.040 1928.500 2278.950 12.118 10.834 12.803 

40 60 2177.260 2130.550 2203.000 12.232 11.969 12.376 

60 60 2156.100 2073.600 2220.050 12.113 11.649 12.472 

80 60 2125.150 1961.200 2238.650 11.939 11.018 12.577 

100 60 2167.790 2014.350 2416.550 12.179 11.317 13.576 

0 80 2116.010 1773.700 2407.750 11.888 9.965 13.527 

20 80 2032.730 1712.200 2322.500 11.420 9.619 13.048 

40 80 2104.850 2010.350 2271.950 11.825 11.294 12.764 

60 80 2126.810 2002.350 2304.700 11.948 11.249 12.948 

80 80 2016.620 1653.350 2326.050 11.329 9.288 13.068 

100 80 2177.360 1813.850 2377.950 12.232 10.190 13.359 

For further improvement of the diversity gathered by the crossover operator, it is 

time to apply dynamic patching crossover over the selected parameters, namely 

P(CO)=0.80 and P(M)=0.80. The results are presented in Table 4.4. Although previous 

exploration of the parameters supports that the diversity is essential for the GA to converge 

to qualitative results, diversity generating crossover operator, namely diverse patching 

crossover, does not further improve the results attained by the former methods. However, 
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this is due to nature of the problem set being considered. The problem set involves uniform 

parallel machines, meaning that the machines being used for scheduling are not identical 

and have different properties such as different processing times and setup times for the 

same jobs. Therefore the machines are not identical. However, dynamic patching crossover 

by its nature, considers the machines as identical. This mismatch causes the degradation in 

the performance. Therefore it is not suitable for this problem set to use dynamic patching 

crossover operator.  

 

Table 4.4. Preliminary results for dynamic patching crossover 

Crossover 
Operator P(CO) P(M) GA∆ AVG GA∆ MIN GA∆ MAX TS

GAAVG

∆
∆

TS
GAMIN

∆
∆

TS
GAMAX

∆
∆

Patching 80 80 2016.620 1653.350 2326.050 11.329 9.288 13.068 

Dynamic 

Patching
80 80 2433.990 2217.650 2565.750 13.674 12.458 14.414 

The Genetic Algorithm strategies and parameters that are set at the end of this 

experimentation stage are summarized below and shown in Figure 4.1. For the initial 

population, the population is fed with some list scheduling heuristics (EDD, SPT, SST, 

ERT, etc). The population type is transient, as explained in Section 3. The population size 

is set to be equal to 100 individuals. From among these individuals, two parents are 

selected via ranking roulette wheel and the linearization parameters “a” and “b” adopted 

for the entire experimentation phase are set to 1.0. The parents are genetically recombined 

by the patching crossover operator with a crossover probability 0.80. The number of 

offspring produced at the end of reproduction, Nc, is 50. Each of these offspring is prone to 

mutation with a probability of 0.80. At this stage, a transient population consisting of 150 

individuals is present. Therefore elimination needs to be employed to reduce the 

population size back to 100.  

 

Therefore, the strategy to follow is to develop adaptive mechanisms to control the 

population diversity within the search procedure. A different yet complementary strategy 

for the diversity control is also included, called training for the purposes of this thesis. The 

major concern in this particular adaptive control strategy is to train the premature 

individuals in the transient population so that they can better cope with the risk of 

elimination via the well-known evolutionary theory of natural selection.  
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Figure 4.1. Summary of Basic GA determined at the end of experimentation 
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It should be also noted that the transient population approach devised in this study is 

in analogy with the law of survival of the fittest, where the best N individuals are allowed 

to survive from among a transient population consisting of the old population and the new 

offspring ranked with respect to their fitness values. Therefore, the Basic GA approach and 

the control strategies presented in the next section increase the analogy between the natural 

evolutionary theory and the GA. 

 

Chapter 5 follows next with a detailed description of the adaptive control strategies 

developed for the Basic GA approach presented in Chapter 3.  
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5.  ADAPTIVE CONTROL OVER BASIC GENETIC ALGORITHM  
 

The Genetic Algorithms are prone to the risk of premature convergence, which 

means that the population converges to a set of good performing and highly similar 

members or to an individual without having much chance of generating representatives of 

diverse hyperplanes of the solution space. Also, it is known that this weakness of GAs can 

be attributed to the high sensitivity of the GA parameters, since most parameters have a 

high influence on the performance of the algorithm and this strong parameter dependence 

affects the robustness of the approach. Therefore, the GA can be termed as unstable from 

the control theory point of view. When a system is defined as unstable, the natural attitude 

is to try to control it. Classical control theory proposes closed-loop systems for robust 

control of a system. A closed-loop system is one that considers the output of the previous 

state as a feedback input for the successive state.  

 

Based on this brief introduction to closed-loop control systems, such a system is 

proposed to increase the robustness of the GA approach. Hence, a closed-loop control 

system tailored for the system under study can maintain the parameters under control 

ranges that are suitable for the problem considered, such that the solutions obtained tend to 

optimality. In order to depict the above defined system, Figure 5.1 is provided.  

 

Figure 5.1. Closed-loop control system 
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Based on this explanation, a control mechanism consisting of complementary 

subcomponents is devised in this study. The experiments performed in Section 4 indicate 

that the problem under study favors rather high mutation rates and thus favors high 

diversity within the GA search. Therefore, the population diversity is the first performance 

indicator to be controlled for higher performance.  

 

On top of this diversity control, a training mechanism is developed which is designed 

to operate on the weak offspring in the population. This control approach aims to 

overcome the risk of premature convergence due to the dominance of some fit individuals 

prevailing at the higher regions of the sorted population. The attitude adopted is to select 

the least fit individuals from the population and run a series of training operations over 

them. This is required to increase their level of maturity before they can actually 

participate in reproduction and especially necessary to diminish their risk of mortality via 

natural selection, which is incorporated as the transient generation scheme in this study. 

This approach is called “training” for the purposes of this study.  

 

These control approaches are not independent however, and the output of one of the 

mechanisms will most of the time behave as the trigger of the other complementing 

mechanism and vice versa. Before further contemplating on this claim, the details of the 

control mechanisms developed and their operating principles need to be provided. The 

following subsections describe the approaches developed for controlling the Genetic 

Algorithm developed in this thesis. 

 

5.1.  Adaptive Control for Population Diversity 

 

Based on the fact that the GA performs better with high mutation rates, and therefore 

with high population diversity, an adaptive mechanism to control the population diversity 

whenever it deviates from a threshold value is developed. The operating principle of the 

control mechanism is simple in that whenever the population diversity falls below a given 

percentage, the control mechanism is triggered and a set of diversifying operations are 

performed on the population. At the end of these moves the population diversity increases 

and the Basic GA is resumed until the diversity falls below the threshold level. For the 
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purposes of designing such a control mechanism a trigger, the measure of population 

diversity, needs to be defined and this is done in the next sub-section. 

 

5.1.1.  Evaluation of Population Diversity 

 

As previously stated, the linearization phase allows the individuals equal priorities 

whenever they have equal total tardiness values. WinMeta v2 exploits this property in such 

a way that the diversity measure to be used by the diversity control trigger is evaluated not 

only in linear time but also very efficiently. The maximum possible value of the fitness 

assigned by the linearization phase occurs when all the individuals in the population have 

distinct total tardiness values. Hence, the maximum value is formulized as  

 

)N(baboundupper  fitness 1−×+= (5.1) 

 

where N is the population size. In this formula “a” and “b” are the linearization parameters 

used in ranking roulette wheel as explained in Section 3.4. Using this definition of the 

maximum fitness in the population, population diversity is calculated in the following 

manner: 

 

boundupper  fitness
population current offitness imummax diversity = (5.2) 

 

Based on this formulation, Table 5.1 depicts the working principle of the 

linearization phase for the calculation of the population diversity. In these examples, a 

population consisting of eight individuals is evaluated, and the total tardiness values are 

converted to fitness values by ranking linearization. For this, the linearization parameters 

“a” and “b” are both set to one. In both examples, since the population size is eight, the 

fitness upper bound also turns out to be eight. In these examples it is seen that if any two 

population members have identical total tardiness values, then their fitness values are also 

identical, and therefore, the fitness upper bound cannot be reached. As such, the population 

diversity falls below 100 per cent in proportion with the number of identical individuals in 

the population.  
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Table 5.1. Linearization phase for calculation of the population diversity 
Sorted Individual Number 1 2 3 4 5 6 7 8

Sorted Tardiness Values 14079 15102 15102 15185 16404 17001 41008 43304 

Fitness Values, f 7 6 6 5 4 3 2 1

Upper bound of fitness 8

EX
A

M
PL

E
1

Diversity evaluation %.5878
7 ⇒

Sorted Individual Number 1 2 3 4 5 6 7 8

Sorted Tardiness Values 803 1148 1148 1148 2205 2205 3181 4005 

Fitness Values, f 5 4 4 4 3 3 2 1

Upper bound of fitness 8

EX
A

M
PL

E
2

Diversity evaluation %.5628
5 ⇒

5.1.2.  Operation of Diversity Control 

 

The diversity generating operations are well defined in that they consist of a series of 

mutations over those population members that are the same in genotype. Before anything, 

the population is sorted with respect to total tardiness. If the population consists of clusters 

of individuals whose fitness values are the same, then the procedure is to preserve the first 

individual in the cluster as it is, and to mutate each of the other individuals belonging to the 

same cluster with the same mutation strength utilized throughout the GA. With such an 

approach, the clusters consisting of identical individuals will be genetically disrupted, and 

more diverse individuals will appear in the population. 

 

The introduction of diversity, however, is done with some precaution by leaving 

some portion of the transient population untouched. This fittest portion is defined as non-

mutants. This concept is introduced for the sake of preserving some very fit individuals 

that may be changed by mutation in the transmission from one generation to the next. 

Setting a value greater than zero for the number of non-mutants ensures that the fittest “k” 

individuals in the population remain untouched. By this means, it is possible to provide 

sufficient emphasis on the current best genotype. Diversity control is schematically 

described in Figure 5.2. 
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Figure 5.2. Operation of diversity control 
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population distribution charts obtained from WinMeta at some successive generations. For 

this purpose, the first instance in the 40 job-2 machine problem set is considered, and the 

diversity threshold is set to be 45 in this case. Figure 5.3 demonstrates the instant when 

diversity falls down to 45 per cent, namely, just when the diversity threshold is reached 

and the control mechanism is triggered.  
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Figure 5.3. GA population at the diversity threshold 

 

It is seen in the figure that there is a prevailing peak in the population and premature 

convergence has started. At this stage, the diversity threshold is reached and the adaptive 

control mechanism to maintain the population diversity above the threshold value is 

triggered. A series of mutations are applied and the outcome of this diversification phase is 

the population distribution obtained in Figure 5.4. 

 

Hence, by the operation of diversity control, the peak consisting of converged 

individuals is suppressed and the population distribution is smoothed, as seen in Figure 5.4. 

This is especially important to prevent premature convergence of the population to some 

local optimum. The function of the diversity control can also be interpreted as decreasing 

the peakedness of the population whenever the fittest individuals start dominating the 

population beyond an acceptable threshold.  
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Figure 5.4. GA population after diversity control is triggered- diversity at 91 per cent 

 

It is also worth noting the difference in the scales of the two diversity graphs 

presented above. After the diversification control is triggered the “tardiness” scale extends 

from 180000 to 700000, and the “number of individuals” scale decreases from 66 to 22. It 

is clearly seen that the peakedness value of the population distribution is decreased after 

the application of the diversification control. 

 

5.2.  Adaptive Training Procedure for Premature Chromosomes 

 

In order to further exploit the recombining strength of the crossover operator, an 

adaptation from real life occurrences is also introduced at this stage. This will be called 

“training” for the purposes of this thesis. This naming is based on the argument that a 

newborn child is not capable of surviving in the environment without first going through a 

series of training sessions. At this stage, it is also apparent that leaving the premature child 

chromosome to struggle with its mature predecessors is unfair when real life practice is 

considered.  
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This concept can be extended to encompass the entire set of unfit individuals in the 

population instead of just the offspring. In this case, the set of unfit individuals needs to be 

specified as a proportion to the entire population. Therefore, it is suitable to adopt a 

training mechanism that will prepare the least fit individuals in the population to cope with 

the environment. This training mechanism consists of a steepest descent process applied 

over the least trained portion of the population.  

 

The trigger of this control is a performance measure of the system that stimulates 

steepest descent when the search stagnates for a proportion of the entire search duration. 

This proportion is set to be 1.0 per cent, i.e. 100 non-improving generations. Two other 

parameters are also needed to completely define the behavior of the training phase. These 

are the duration of the training session applied over each of the individuals and the number 

of individuals to be educated. The former is defined in number of iterations for which 

steepest descent will take over and the latter is defined as a percentage, TP, of the total 

population.  

 

The real strength of the control system devised will be reflected only when both the 

adaptive diversity control and the adaptive training strategies are superimposed on the 

system. It is at that stage that the control system will attain the closed-loop form depicted 

in Figure 4.2.  

 

The training phase designed for adaptive control aims to improve the quality of the 

worst individuals in the population, so that the population members are forced to cycle 

within the sorted transient population if they survive through the elimination phase. This 

situation is shown in Figure 5.5.  

 

This cycle is a natural consequence of the training phase, since those population 

members that are trained move to the higher fitness regions in the sorted population, 

whereas the individuals that originally prevailed in the high fitness regions move to the 

lower fitness regions since superior individuals are inserted. In order to depict the working 

mechanism of the training phase, Figure 5.5 is provided, where the ranked population 

consisting of 100 individuals has 20 of the worst individuals improved by a training phase.  
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Upon training, the worst individuals improve in fitness and there is a reshuffling of 

the population. In this example, 20 per cent of the population is prone to training. This 

percentage can be adjusted depending on the requirements of the problem.  

 

Figure 5.5. Circulation of individuals in the population 
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To study the marginal effect of training over the population, once again, the first 

instance in the 40 job-2 machine problem set is utilized. The following figures from the 

GUI of WinMeta depict the operation of the training phase, where Figure 5.6 shows the 

distribution of the population just before the training phase is triggered. 

 

Figure 5.6. Population distribution at training trigger threshold 

 

Figure 5.7. Population distribution after training phase 
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Based on these figures, it is evident that the function of the training phase is to 

improve the fitness of the worst population members so that the population distribution 

curve is smoothed out towards the right, hence towards the region of high fitness 

individuals. In other words, the function of training can be defined as decreasing the 

skewness in the population distribution.  

 

It is important to note that after the training phase the “tardiness” scale decreased 

from 500000 to 180000, and the “number of individuals” scale increased from 25 to 26. 

The training phase is adjusted in such a manner that it only educates the unfit population, 

and therefore provides fitter individuals, which will be further improved by the crossover 

operator of the GA. The main approach is not the application of a steepest descent 

algorithm to improve the current fittest individual. Nevertheless the application of a 

steepest descent phase at the very end of the GA, just before presenting the fittest 

individual ever reached throughout the search, will still have the chance of improving the 

best found tardiness value. Although the literature contains various examples of steepest 

descent applications falling in these categories, the aim of this study is to present a generic 

adaptive approach to support the performance of the GA, not searching for the best values 

aggressively. 
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6.  EXPERIMENTATION FOR ADAPTIVE CONTROL 
 

In this section, the experimentation and numerical results for the adaptive control 

mechanism explained in Section 5 are provided. The control approaches are tailored 

according to the problem under consideration and fine-tuned with respect to the working 

principles of one another over the “40 job-2 machine” problem set. After establishing a 

steady control system, the resulting parameters are applied over the remaining problem 

sets, which consist of “40 job-4 machine”, “60 job-2 machine” and “60 job-4 machine” 

problems.  

 

Based on the definitions of the control strategies, some parameter values need to be 

optimized with respect to the problem. First of all, the population diversity control 

mechanism is handled. For this control approach, the number of non-mutants in the 

population is set to a fixed value (10 per cent of the entire population) and the diversity 

threshold, which is the measure that triggers the control mechanism, is adjusted. The 

number of non-mutants will be fine-tuned in the second stage of experimentation where the 

training control mechanism is also introduced. 

 

For the diversity threshold, the results of the experiments regarding this parameter 

are presented in Table 6.1, where crossover probability is also further fine-tuned. Based on 

these results, the crossover probability is set to 80 per cent and the diversity threshold is set 

to be 60 per cent. These will be the default values of these parameters for the remaining 

experiments conducted in this study. 

 

Table 6.1. Preliminary experiments for diversity control 

Diversity  

P(CO) P(M)
Non-

Mutants Threshold GA∆ AVG GA∆ MIN GA∆ MAX TS
GAAVG

∆
∆

TS
GAMIN

∆
∆

TS
GAMAX

∆
∆

80 80 10 60 1565.320 1408.350 1697.750 8.794 7.912 9.538 
80 80 10 70 1709.120 1511.850 2002.200 9.602 8.494 11.248 
80 80 10 80 1673.820 1606.250 1799.850 9.403 9.024 10.112 
85 80 10 60 1671.910 1455.200 1780.700 9.393 8.175 10.004 
75 80 10 60 1670.260 1519.700 1774.400 9.383 8.538 9.969 



49

Comparing these results with the case where no diversity control is used, the former 

value of GA∆ AVG / TS∆ decreases from 11.329 to 8.794. Therefore the diversity control 

enhances the quality of the solutions on the whole.  

 

Although the improvement provided by the diversity control seems to be low at first 

sight (22.4 per cent), it is worth noting that the true power of this control mechanism will 

be revealed when its complementing subcomponent is also introduced within the system as 

explained in Section 5.2.  

 

The next set of experiments investigates the effect of training over the performance 

of the GA, where having the two control strategies superimposed on the pure GA, the well-

known closed-loop control system is achieved. For this purpose, the number of trainees 

and the training duration are the two control parameters that need to be fine-tuned. These 

not only need to be fine-tuned for the training control, but also optimized with respect to 

time requirements of the training algorithm. As for the diversity control mechanism, the 

number of non-mutants is the parameter that needs to be fine-tuned at this stage. Therefore, 

before attempting to optimize the parameters of the training control mechanism, the 

number of non-mutants is considered. For this parameter, various values are tried, while 

keeping the training control parameters set to some default values (both parameters being 

set to 10 for this set of experiments) and the best performing settings are presented in Table 

6.2. It is seen from these results that the best value for the number of non-mutants is 10, 

since it provides the lowest value for AVGGA∆ / TS∆ .

Table 6.2. Fine-tuning of non-mutants in diversity control 

Training Diversity 
Number 

of 
trainees

Training 
duration Threshold

Non-
Mutants P(CO)P(M) GA∆ AVG GA∆ MIN GA∆ MAX TS

GAAVG

∆
∆

TS
GAMIN

∆
∆

TS
GAMAX

∆
∆

10 10 60 5 80 80 305.360 134.200 398.900 1.716 0.754 2.241 
10 10 60 8 80 80 297.120 146.400 380.350 1.669 0.822 2.137 
10 10 60 10 80 80 293.810 212.550 358.100 1.651 1.194 2.012 
10 10 60 12 80 80 326.720 192.550 403.350 1.836 1.082 2.266 

The next step in the fine-tuning experiments is to handle the number of trainees and 

the training duration. For this set of experiments, the two parameters are both considered 
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simultaneously by keeping the value of one of them constant and varying the other. Once 

the best value for one of the parameters is achieved, it is set as the default value of the 

parameter and the second parameter is then varied. The following settings presented in 

Table 6.3 and Table 6.4 are utilized for this purpose.  

 

In Table 6.3, the training duration is set to a fixed value of 10 and the number of 

trainees is varied in the range [5, 20]. It is a clear observation that increasing the number of 

trainees has a positive effect on the performance of the GA. By looking at the last row in 

Table 6.3, it is seen that the best performance is achieved by setting the number of trainees 

to 20. Although the intuition is that further increasing the number of trainees will still 

increase the solution quality, there is a prohibitive aspect of the attitude in that increasing 

the number of trainees increases the solution quality at the expense of increasing the 

computational requirements as well. Hence, this tradeoff can be overcome by accepting a 

threshold value and this value is set to be 20 in this study.  

 

Table 6.3. Fine-tuning of number of trainees  

Training Diversity 
Number 

of 
trainees

Training 
duration Threshold

Non-
Mutants P(CO)P(M) GA∆ AVG GA∆ MIN GA∆ MAX TS

GAAVG

∆
∆

TS
GAMIN

∆
∆

TS
GAMAX

∆
∆

5 10 60 10 80 80 455.690 352.050 541.800 2.560 1.978 3.044 
8 10 60 10 80 80 315.230 183.550 439.050 1.771 1.031 2.467 

10 10 60 10 80 80 293.810 212.550 358.100 1.651 1.194 2.012 
12 10 60 10 80 80 316.630 187.400 376.400 1.779 1.053 2.115 
15 10 60 10 80 80 288.390 168.050 464.100 1.620 0.944 2.607 
20 10 60 10 80 80 206.380 107.000 335.800 1.159 0.601 1.887 

Having established the default value for one of the training control mechanism 

parameters, the next parameter can be adjusted. The parameter to be adjusted is the training 

duration, which refers to the number of iterations for which the premature individual will 

be trained. In this tuning process, the training duration is varied within the range [2, 15] 

and the performance measure is evaluated for each parameter setting presented in Table 

6.4. Looking at the first row in Table 6.4, where the training duration is set to two 

iterations, the value for AVGGA∆ / TS∆ is found to be 6.899. This value decreases to 0.809 

in the last row of this table, where the training duration applied over the premature 

chromosomes is set to 15.  
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Table 6.4. Fine-tuning of duration of training 

Training Diversity 
Number 

of 
trainees

Training 
duration Threshold

Non-
Mutants P(CO)P(M) GA∆ AVG GA∆ MIN GA∆ MAX TS

GAAVG

∆
∆

TS
GAMIN

∆
∆

TS
GAMAX

∆
∆

20 2 60 10 80 80 1228.090 1007.600 1392.950 6.899 5.661 7.826 
20 4 60 10 80 80 967.650 868.250 1124.350 5.436 4.878 6.317 
20 6 60 10 80 80 700.140 586.500 847.950 3.933 3.295 4.764 
20 8 60 10 80 80 409.200 360.750 499.000 2.299 2.027 2.803 
20 10 60 10 80 80 206.380 107.000 335.800 1.159 0.601 1.887 
20 12 60 10 80 80 166.570 90.100 219.650 0.936 0.506 1.234 
20 15 60 10 80 80 144.050 67.750 218.700 0.809 0.381 1.229 

Since the results presented in Table 6.4 show that increasing the training duration to 

15 iterations increases the performance with respect to the case when 12 iterations are 

used, and this leads to the intuition that further increasing the value of this parameter will 

result in higher performances. However, the computational time requirements are more 

than the marginal utility introduced and to maintain the feasibility of computational time 

requirements, the value for this parameter is set to 15 for the remainder of this study.  

 

The fine-tuning process for the control strategies is completed. A set of default 

values for all the parameters is obtained. At this stage, it is necessary to provide a 

comparative analysis of the strategies introduced so far and the improvements achieved via 

each of the control mechanisms. The results of this analysis are presented in the following 

table where a comparison of the three cases of no control at all, the diversity control and 

both the diversity and training controls is made.  

 

Table 6.5. Comparison of control strategies 

Training Diversity 
Number 

of 
trainees

Training 
duration Threshold

Non-
Mutants P(CO) P(M) 

TS
GAAVG

∆
∆

- - - - 80 80 11.329 
- - 60 10 80 80 8.794 

Percent improvement introduced by diversity control 22.38 
20 15 60 10 80 80 0.809 
Percent improvement introduced by diversity control and 

training control 92.86 
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At this stage the preliminary experimentation for the control approaches is completed 

and the resulting parameter settings for the GA approach are set as the default values. To 

summarize, the population size used for the GA approach is 100 individuals, and the 

number of offspring generated at each generation is set to 50. The crossover operator is 

employed with 80 per cent probability. The PMTT problem addressed in this study favors 

rather high diversity within the search phase and hence high mutation rates. Therefore, the 

mutation probability is set to 80 per cent for best performance. The complementary control 

mechanisms imposed over the pure Genetic Algorithm have two distinct parameters each. 

For the diversity control in the population, the control mechanism is triggered whenever 

diversity falls below a threshold of 60 per cent. However, in order to preserve the precious 

genetic information prevailing in the fitter portion of the transient population, the concept 

of non-mutants is introduced and this parameter works best when set to a value of 10. 

Based on this explanation, the fittest 10 individuals are protected from mutation in the 

diversification phase. On top of this, the training control mechanism is also superimposed. 

The training mechanism is triggered whenever the search stagnates for 100 generations. 

The worst 20 per cent of the current population is educated by training the individuals via 

15 steepest descent iterations.  

 

In the next part of the experimentation performed, these parameter settings are 

applied over the “40 job-4 machine”, “60 job-2 machine” and “60 job-4 machine” problem 

sets respectively. The next subsection provides the details of the experimental procedure 

followed for this phase of experimentation.  

 

6.1.  GA Performance for the Remaining Problem Sets 

 

Since the aim of this study is to develop a robust adaptive control mechanism in the 

form of a closed loop system to control the Genetic Algorithm performance, the effect of 

the control mechanisms developed so far are studied over problem sets consisting of 

different instance sizes. In the PMTT problem, which constitutes the test-bed for the 

adaptive GA, the instances vary according to the number of jobs and the number of 

machines. A natural consequence is that the solution space increases as the problem 

instance size increases. Hence, the aim of this part of experimentation is to determine the 

robustness of the control approaches devised when different problem sizes are treated.   
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In this phase of experimentation, the strategy is to first treat the problem sets of 

different instance sizes with the Basic GA in its pure form as explained in Chapter 3. Upon 

the Basic GA, the parameter settings emerging from the adaptive control experiments 

performed for the “40 job-2 machine” problem set are applied and the percent 

improvement is traced. By this means the robustness of the control mechanism developed 

is established. The results of this phase of experimentation are presented in Table 6.6, 

where both the Basic GA results and the adaptive GA results are shown. Also, the per cent 

improvements brought over the Basic GA are produced and demonstrated. For ease of 

illustration, the performance attained with the “40 job-2 machine” problem set is also 

included in the first two rows of Table 6.6.      

 

Table 6.6. Effect of adaptive GA 

Training Diversity 
Problem  

Set P(CO) P(M)
Number of

trainees 
Training
duration Threshold

Non- 
Mutants GA∆ AVG TS∆

GA∆ AVG

40 Job 
2 Machine 80 80 - - - - 2016.62 11.329 

40 Job 
2 Machine 80 80 20 15 60 10 144.05 0.809 

Per cent improvement 92.86 
40 Job 

4 Machine 80 80 - - - - 333.120  7.065  
40 Job 

4 Machine 80 80 20 15 60 10 52.840  1.121  
Per cent improvement 84.13 

60 Job 
2 Machine 80 80 - - - - 4647.7 6.534 

60 Job 
2 Machine 80 80 20 15 60 10 420.57 0.591 

Per cent improvement 90.96 
60 Job 

4 Machine 80 80 - - - - 1134.08 6.099 
60 Job 

4 Machine 80 80 20 15 60 10 1006.73 5.414 
Per cent improvement 11.23 

Based on the results thus presented, the control strategies developed introduce 

improvement over the performance of the Basic GA to a great extent. The AVGGA∆ / TS∆

ratios below 1.0 mean that the performance of TS in reaching the best solutions reported so 

far is exceeded by the GA approach in this study. For the 40 job-2 machine, and 60 job-2 

machine problem sets, the values of this ratio turn out to be 0.809 and 0.591, respectively. 



54

Furthermore some of the best-found solutions reported by the literature are improved. The 

revised best values are presented in Appendix B.3. 

 

The highest improvement rate is attained in the 40 job-2 machine problems, which is 

expected since the entire fine-tuning experimentation is done over the 40 job-2 machine 

problem set. Using the same parameter settings over the 60 job-2 machine problem set as 

well results in a slightly lower performance upgrade when compared with the 40 job-2 

machine case. This result indicates that by only changing the number of jobs in the parallel 

machine-scheduling problem, the quality of the results obtained via the adaptive GA does 

not deteriorate. In other words, varying one of the problem parameters does not necessitate 

adjustment of the GA parameters, since the adaptive GA reduces the parameter sensitivity 

of GA. If on the other hand, the number of jobs is kept constant and the number of 

machines is varied, as in the 40 job 4-machine problem set, the improvement achieved is 

close to the performance in the 40 job-2 machine. Therefore the argument is that varying 

just one of the defining parameters of the problem instance does not affect the performance 

of the adaptive GA.  

 

If however, both of the defining parameters, i.e. number of jobs and number of 

machines, are changed, then the performance improvement introduced by the adaptive GA 

decreases. This can be seen by looking at the per cent improvement of 11.23 introduced 

over the 60 job-4 machine problem set, which is not as good as the other problem sets. 

Nevertheless, adaptive GA can still improve the preliminary results obtained by the Basic 

GA in 60 job-4 machine problem instances as well. Hence, a concluding remark in this 

respect is that in the parallel machine total tardiness problem, when the parameters having 

correlation are both varied simultaneously, the robustness of the adaptive GA is not 

sufficient to completely remove the parameter dependence of the Basic GA.  
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7.  CONCLUSIONS 
 

This study aims to develop a robust adaptive control mechanism over Genetic 

Algorithms. For this purpose, a Basic GA is developed by tackling the key elements of 

Genetic Algorithms. Taking into consideration the fundamentals of control theory, a 

closed-loop control system is devised for adaptive control of this Basic GA. These 

strategies are applied over the Parallel Machine Total Tardiness (PMTT) problem to 

evaluate the robustness of the adaptive control mechanism thus generated.  

 

The PMTT scheduling problem consists of a set of jobs to be scheduled on a number 

of parallel machines, where the aim is to minimize the total tardiness of all the jobs. This 

study addresses the most generic form of the problem in that distinct ready times, due dates 

and processing times are considered for each job. In addition to these features, sequence 

dependent setup times and non-identical, i.e. uniform machines are also incorporated to 

simulate more closely the actual practice in the industry.  

 

As the first step, the fundamentals of Genetic Algorithms are studied and a basic GA 

approach is developed to meet the requirements of PMTT. The key elements tackled to 

address the PMTT problem result in a series of parameters that need to be regulated for 

efficiency and performance. In order to achieve a closed-loop form for the control 

mechanism over the Basic GA, two complementary control strategies that operate upon 

different triggers are implemented. These control strategies operate sequentially in that 

whenever one of them is triggered, the outcome becomes the trigger for the complementary 

strategy. This is clearly observed by the GUI of WinMeta and the population distributions 

resulting after each control mechanism is triggered. Hence, whenever population diversity 

decreases, a series of diversifying moves, applied in the form of mutation, smooth out the 

population distribution, and the regular GA progress is resumed until the recombining 

strength of crossover proves to be insufficient to generate new and fitter individuals and 

the search stagnates for a given period. At this stage, the training mechanism is triggered to 

improve the worst population members to force the GA out of the stagnation period. 

Having established the closed-loop control mechanism over the Basic GA, a set of 

problems from the literature is employed for evaluation of performance and robustness.  
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The problem set used for experimentation is obtained from the literature [19] and 

considers the deterministic dynamic PMTT problem with sequence dependent setup times. 

These problem sets are solved via WinMeta [23], which is a software developed for this 

thesis in order to work with scheduling problems with tardiness based objectives. WinMeta 

can readily incorporate new solution strategies and enhancements to the strategies 

developed in this study. The GUI of WinMeta not only allows ease of experimentation, but 

also introduces a great deal of flexibility by allowing the user to set up any combination of 

parameters and perform extensive experiments via a special batching system. The 

graphical display of WinMeta also provides the possibility to observe the population 

distribution throughout the GA progress, where some population distribution 

characteristics are dynamically evaluated and displayed.  

 

The problem set used for performance evaluation is first solved by the Basic GA 

strategy developed and a set of preliminary and advanced experimentation phases are 

performed. In the preliminary experimentation phase, the basis for the adaptive control 

mechanism is established. Therefore, upon this Basic GA, an adaptive control mechanism 

to decrease the parameter dependence of the basic GA is implemented. Hence, the aim and 

accomplishment of this study is to adaptively control the GA to better exploit its strengths 

by diminishing its high parameter dependence. In order to accomplish this, the most 

sensitive parameters are determined and studied via a preliminary analysis consisting of a 

set of initial experiments. In this phase of experiments, some parameters are tuned for high 

performance so that the best performing GA parameter settings become the basis for the 

control strategies to be developed. Among various system evaluation possibilities, 

population diversity is selected as the system output upon which the adaptive GA approach 

is based. The results of the preliminary experimentation phase reveal that high diversity in 

the population increases the performance of the basic GA.  

 

Performance evaluation is done based on the best-known results to the problem set as 

published by Bilge et al. [23], who not only list their best-known values but also present 

the best results obtained via their totally deterministic TS algorithm. Hence, the success of 

GA is determined by evaluating the total deviation from the best-known values in the 

literature. The deterministic TS approach and the adaptive GA approach are also compared 

in their performances by determining the ratio of deviations of these strategies from the 
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best known values [23]. This ratio reflects the success of the probabilistic GA in achieving 

high quality solutions with respect to the TS approach.  

 

The GA strategy has a stochastic nature that imitates the natural evolutionary 

process, and because of this, replication is necessary in the experiments. Therefore, the GA 

experimentation is conducted with five different seeds. The GA results obtained for this set 

of problems show that, for the “40 job-2 machine” PMTT problem, when the performance 

of five seeds is averaged, GA succeeds to 0.809. If the best performing seed is considered, 

then this ratio attains the value of 0.381. For the “40 job-4 machine” problem set, the GA 

approaches the performance of the TS algorithm [23], and yield a deviation of 1.120 from 

the best-known values. Considering the best performing seed, this ratio becomes 0.846. As 

for the “60 job-2 machine” problem set, GA has a success rate of 0.591 in reaching the 

best-known values to the literature as compared to the totally deterministic TS approach. 

The best performing seed has a success rate of 0.460. In “60 job-4 machine” problem set 

GA succeeds to 1.437 and 1.234 when the average and the minimum of the replications are 

considered respectively. It is worth noting that the values less than 1.0 are the indication of 

higher performance when compared to TS best strategy proposed in Bilge et al [23].  

 

The time performance of the adaptive GA reveals the fact that for the 40 job-2 

machine problem set, the time requirement to find the best solution in the course of GA is 

in the range of [0, 37] seconds. This range becomes [0, 68] if the entire search process is 

considered. These time ranges turn out to be [0, 48] and [0, 75] for the 40 job-4 machine 

problem set. When the 60 job problem sets are considered, the time ranges become [0, 116] 

and [0, 174] for the 2-machine case whereas for the 4-machine sets these ranges are [0, 

136] and [0, 183]. 

 

To conclude, a general analysis of GA is necessary within its own context. GA has a 

high number of parameters that can be adjusted for higher performance. However a trade 

off prevails due to the difficulty of fine-tuning the parameters. This difficulty is magnified 

by the concern of problem size as well. Also, since most of the GA parameters are not 

independent, like N and Nc, these parameters need to be fine-tuned in accord with problem 

size and each other. Setting all the GA parameters (for instance N, Nc, P(CO), etc.) to 

some predefined default values regardless of the problem nature and size is clearly a bad 
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strategy that cannot guarantee robustness in the GA. Therefore the major enhancement 

brought to the GA concept in this thesis is the adaptive control mechanism tailored to the 

Basic GA design. Furthermore, the Basic GA design incorporates a major enhancement in 

the form of the transient generation approach, which at each generation, forms a transient 

population consisting of the original N individuals and the Nc new offspring. This 

approach, together with the elimination scheme devised, is an important performer in 

increasing the average population fitness form generation to generation. Moreover, the 

transient generation approach is in strong analogy with the survival of the fittest law in 

natural evolutionary theory. In addition to the transient generation approach, the well-

known uniform-order based crossover mechanism, which is called patching crossover 

operator for the purposes of this study, is enhanced by implementing a dynamic 

recombination structure. This structure, called dynamic patching crossover, reshuffles the 

gene string encoding different machine schedules and then maps the template binary string 

to recombine the genetic information from the two parents. This approach is innovative in 

that inter-machine job movements are allowed for generating different machine schedules. 

Although the dynamic patching crossover does not show the expected performance, this is 

attributed to the fact that the problem set under study consists of parallel machine 

scheduling problems with uniform machines, which are not identical and technology 

differences in the machines disrupt the working principle of the dynamic patching 

crossover operator. Finally, in this study, the recombining capabilities of the crossover 

operator are also fortified by the aid of the control mechanisms built on population 

diversity and convergence behavior.  

 

It is important to state that most studies from the literature propose GAs that are 

subjected to climbing heuristics like steepest descent at the end of the GA, that is after the 

GA has converged to various local optima. Although the same attitude can be incorporated 

in the Basic GA developed in this study, this is not done since it is out of the scope of this 

thesis. As a future study, this strategy can be implemented and tested over the Basic GA 

and the adaptive GA approaches to evaluate its impact. The dynamic patching crossover 

operator is also worth attention in regard of future studies in that its true strength is not 

reflected in the problem set used for experimentation. Hence, the diversifying effect of this 

crossover operator can be enhanced in studies over different GAs addressing different 

problems.  
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APPENDIX A: WINMETA SAMPLE SCREENS 
 

This appendix provides sample screens for WinMeta, which is a software developed 

for experimentation conducted in this study. WinMeta is a software that addresses 

scheduling problems with tardiness based objectives. It incorporates flexible modular 

components that enable continuous development of the software via implementing various 

metaheuristic solution strategies and heuristics. The Graphical User Interface of WinMeta 

is demonstrated with the following figures. 

 

Figure A.1. WinMeta v2 batch processing module 
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Figure A.2. Job settings  

Figure A.3. Setup matrix for Type I machines  
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Figure A.4. Genetic algorithm population display 

Figure A.5. Population distribution graph 
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Figure A.6. Control parameters supported by WinMeta v2 

Figure A.7. Regulation of parameter settings in WinMeta v2  
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Figure A.8. Machine schedules and evaluations 

Figure A.9. Modular menu structure of WinMeta v2- (crossover operators) 
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Figure A.10. Built-in GA controllers  
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APPENDIX B: SOLUTIONS TO PMTT PROBLEM SET 
 

Appendix B provides the results for the best performing TS strategy addressing the 

PMTT problem used in this study. The best known results from the literature, the updated 

best-known values via the adaptive GA approach and the results of the adaptive GA are 

provided. 

 

Table B.1. Results for best TS strategy [23] 

TS RESULT 
60 JOBS  60 JOBS  40 JOBS 40 JOBS  

Problem 2 MACHINES 4 MACHINES 2 MACHINES 4 MACHINES
1 14677 0 14079 0 

2 6990 4006 3946 0

3 17749 155 3335 0

4 73389 0 10095 0

5 35543 2737 19722 0

6 52825 364 26372 0

7 26776 5064 19324 1216 

8 8998 0 37789 79 

9 17254 0 1055 0

10 21434 6039 1038 0

11 11860 4937 1869 0 

12 14991 0 8465 0

13 13303 0 8382 2919 

14 6941 0 5869 2704 

15 20068 0 22134 1886 

16 23883 90 43502 0

17 12222 0 15976 0

18 40237 0 6430 0

19 300 0 28192 0

20 26500 0 2934 0
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Table B.2. Best known solutions in literature [23] 

BEST KNOWN RESULTS 

60 JOBS  60 JOBS   40 JOBS 40 JOBS  

Problem 2 MACHINES 4 MACHINES 2 MACHINES 4 MACHINES

1 14205 0 14079 0 

2 6528 2737 3946 0 

3 17296 155 3335 0 

4 72406 0 10095 0 

5 34640 2591 19695 0 

6 50492 339 26372 0 

7 26660 4744 18565 914 

8 8042 0 37513 48 

9 16790 0 1055 0 

10 20943 4626 1038 0 

11 11204 4423 1726 0 

12 14080 0 8199 0 

13 12806 0 8382 2807 

14 6874 0 5860 2704 

15 20017 0 21712 1388 

16 23883 58 43502 0 

17 12222 0 15816 0 

18 38948 0 5866 0 

19 164 0 27258 0 

20 23514 0 2934 0 
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Table B.3. Best known values updated by adaptive GA 

 UPDATED BEST KNOWN RESULTS 

60 JOBS  60 JOBS  40 JOBS 40 JOBS  

Problem 2 MACHINES 4 MACHINES 2 MACHINES 4 MACHINES

1 14205 0 14079 0 

2 6528 2737 3946 0 

3 17296 155 3335 0 

4 72330* 0 10095 0 

5 34578* 2591 19671* 0

6 50138* 339 26372 0 

7 26660 4744 18565 914 

8 8030* 0 37513 48 

9 16790 0 1055 0 

10 20899* 4626 1038 0 

11 11204 4423 1726 0 

12 14080 0 8199 0 

13 12806 0 8382 2807 

14 6834* 0 5860 2704 

15 20017 0 21562* 1388 

16 23883 58 43395* 0

17 12222 0 15816 0 

18 38948 0 5866 0 

19 164 0 27258 0 

20 23514 0 2887* 0

Those values marked with a * are contributed by the adaptive GA algorithm devised in 

this study. 
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Table B.4. Results of adaptive GA 

60 JOBS  
2 MACHINES 

60 JOBS  
4 MACHINES 

40 JOBS 
2 MACHINES 

40 JOBS 
4 MACHINES Problem 

Number Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. 
1 14205 15161 14525.5 0 0 0.0 14079 14986 14260.4 0 0 0.0
2 6528 6528 6528.0 3640 4981 4521.6 3946 4242 4005.2 0 0 0.0
3 17296 17406 17351.0 494 1657 861.8 3335 3335 3335.0 0 0 0.0
4 72487 74230 73067.8 0 0 0.0 10095 10758 10360.2 0 0 0.0
5 35177 36652 36183.5 2591 3275 2840.4 19671 19967 19760.8 0 0 0.0
6 50138 50138 50138.0 380 557 466.2 26372 27959 27324.2 0 0 0.0
7 26535 26916 26796.8 5221 5919 5444.0 18565 19099 18671.8 1160 1280 1220.0
8 8030 8439 8232.8 0 0 0.0 37513 38055 37834.4 196 255 225.5
9 17052 17558 17288.0 144 316 196.6 1055 1938 1425.6 0 0 0.0

10 20899 22428 21816.3 4917 5742 5338.0 1038 1473 1125.0 0 0 0.0
11 11204 12756 12220.0 4540 5270 4919.6 1726 1873 1814.2 0 0 0.0
12 14080 14485 14181.3 0 0 0.0 8199 8199 8199.0 0 0 0.0
13 12806 13103 12880.3 0 0 0.0 8382 8382 8382.0 3088 3088 3088.0
14 6834 6922 6868.0 0 0 0.0 5860 6335 6080.2 2704 2704 2704.0
15 20422 20661 20501.8 0 0 0.0 21712 21977 21765.0 1391 1740 1565.5
16 24081 25118 24507.0 342 500 428.0 43395 43606 43437.2 0 0 0.0
17 12267 12979 12590.8 0 0 0.0 15816 16095 15871.8 0 0 0.0
18 39536 40176 39793.0 0 0 0.0 5866 6391 5971.0 0 0 0.0
19 351 517 392.5 0 0 0.0 27258 27258 27258.0 0 0 0.0
20 23911 25158 24369.0 0 0 0.0 2939 2954 2948.0 0 0 0.0
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